Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

A plane surface is inclined making an angle β above the horizon. A bullet is fired with the point of projection at the bottom of the inclined plane with a velocity u; then the maximum range is given by:

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

u2g

b

u2g(1+sinβ)

c

u2g(1-sinβ)

d

u2g(1+cos β)

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Suppose the particle be projected with a velocity u making an angle θ with the horizontal. Suppose the particle strikes the inclined plane at A after time T. If x-axis is taken along the inclined plane and y-axis normal to the inclined plane. Thenux = u cos (θ-β), uy = u sin(θ-β)During the time of flight T, the displacement along y-axis is zero. Using equation sy = uyt+12ayt20 = u sin(θ-β)T+12(-g cos β)T2T = 2u sin(θ-β)g cos βComponent of velocity along horizontal = u cos θDistance covered along horizontalOB = (u cos θ)T        = u cos θ[2u sin(θ-β)g cos β]        = 2u2cos θ sin(θ-β)g cos βRange R = OA OA = OBcos β =2u2 cos θ sin(θ-β)g cos2βR = 2u2 cos θ sin(θ-β)g cos2β   = [u2g cos2β][2 sin(θ-β)cos θ] = u2g cos2 β[sin(2θ-β)-sinβ]For a given u and β, R is maximum, when sin(2θ-β) is maximum, i.e., when   sin(2θ-β) = 1 or 2θ - β = π2or 2θ = β+π2 or θ = β2+π2Hence, the angle of projection θ, for maximum range up the inclined plane is given byθ = β2+π4Rmax = u2g cos2β[1-sin β]         = u2(1-sin β)g(1-sin2β) = u2g(1+sin β)
Watch 3-min video & get full concept clarity

courses

No courses found

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon