A portion of a ring of radius R has been removed as shown in figure. Mass of the remaining portion is m. Centre of the ring is at origin O. Let IA and IO be the moments of inertia passing through points A and O are perpendicular to the plane of the ring. Then,
see full answer
Your Exam Success, Personally Taken Care Of
1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya
a
I0=mR2
b
IO
c
IO>IA
d
Both 1 and 4 are correct
answer is D.
(Unlock A.I Detailed Solution for FREE)
Best Courses for You
JEE
NEET
Foundation JEE
Foundation NEET
CBSE
Detailed Solution
Whole mass has equal distance from the centre O. Hence, IO = mR2 . Further, centre of mass of the remaining portion will be to the left of point O. More the distance of axis from centre of mass, more is the moment of inertia. Hence, IA > IO.