Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The upper half of an inclined plane of inclination θ is perfectly smooth while lower half is rough. A block starting from rest at the top of the plane will again come to rest at the bottom, if the coefficient of friction between the block and lower half of the plane is given by

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

μ=2tanθ

b

μ=tanθ

c

μ=1tanθ

d

μ=2tanθ

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let m be mass of the block and L be length of the inclined plane.            According to work-energy theorem         W=ΔK=0         (∵Initial and final speeds are zero)       Work done by friction+ Work done by gravity= 0   −μmgcosθL2+mgsinθL=0 μ2cosθ=sinθ μ=2sinθcosθ=2tanθ       Alternate solution           For upper half smooth plane Acceleration of the block, a=gsinθHere, u = 0 (∵block starts from rest)a=sinθ,s=L2 Using, v2−u2=2as,we have     v2−0=2×gsinθ×L2 v=gLsinθ            −−−(i)      For lower half rough planeAcceleration of the block,a'=gsinθ−μgcosθwhere μis the coefficient of friction between the block and lower half of the planeHere, u=v=gLsinθ,v=0  ∵  block  comes  to  rest a=a'=gsinθ−μgcosθ,  s=L2 Again , using v2−u2=2as, we have 0−gLsinθ2=2×gsinθ−μgcosθ×L2 −gLsinθ=gsinθ−μgcosθL −sinθ=sinθ−μcosθ μcosθ=2sinθ μ=2tanθ
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring