InfinityLearnInfinityLearn
courses
study material
results
more
call.svg
need help? talk to experts
talk to experts
7996668865
call.svg
sticky footer img
Not sure what to do in the future? Don’t worry! We have a FREE career guidance session just for you!
  • Download RD Sharma Solutions for Class 12 Maths Chapter 2 Functions PDF
    • Access answers to Maths RD Sharma Solutions For Class 12 Chapter 2 – Functions
  • Functions Class 12 RD Sharma Solutions FAQs
rd sharma solutions /
RD Sharma Solutions for Class 12 Maths Chapter 2 Functions – PDF Download
Back to Blog

RD Sharma Solutions for Class 12 Maths Chapter 2 Functions – PDF Download

By Karan Singh Bisht

|

Updated on 30 Apr 2025, 11:36 IST

RD Sharma Solutions for Class 12 Maths Chapter 2 – Functions are designed to help students achieve excellent academic scores. These solutions, created by subject experts, aim to boost students' confidence in understanding the concepts and solving problems efficiently within a shorter time. The solutions offer step-by-step guidance and are perfect for clearing doubts while practicing.

RD Sharma Solutions for Class 12 Maths Chapter 2 Functions covers key topics such as the definition of functions, domain, and codomain. With four exercises, this chapter helps students grasp the essential concepts needed for the CBSE Class 12 board exams. RD Sharma Solutions for Class 12 are carefully prepared following the latest CBSE syllabus and taking into account the types of questions commonly asked in the exams.

Fill out the form for expert academic guidance
+91

Here are some of the critical concepts covered in this chapter:

  • Classification of Functions
  • Types of Functions: Constant, Identity, Modulus, Integer, Exponential, Logarithmic, Reciprocal, Square Root
  • Operations on Real Functions
  • Kinds of Functions: One-to-One, Onto, Many-One, In-To, Bijection
  • Composition of Functions: Properties and Composition of Real Functions
  • Inverse of a Function: Inverse of an Element
  • Graphical Representation: Relation between the graphs of a function and its inverse

Students can easily access the RD Sharma solutions to the exercises in this chapter and use them as a valuable resource for thorough revision and effective problem-solving.

Unlock the full solution & master the concept
Get a detailed solution and exclusive access to our masterclass to ensure you never miss a concept

Download RD Sharma Solutions for Class 12 Maths Chapter 2 Functions PDF

RD Sharma Class 12 Maths Solutions for Chapter 2 – Functions cover all the questions from the textbook, crafted by expert Mathematics teachers at Infinity Learn. Download our free PDF of Chapter 2 – Functions RD Sharma Solutions for Class 12 to boost your performance in board exams and competitive exams.

Access answers to Maths RD Sharma Solutions For Class 12 Chapter 2 – Functions

Q. Which of the following functions from A to B are one-one and onto?

Ready to Test Your Skills?
Check Your Performance Today with our Free Mock Tests used by Toppers!
Take Free Test

(i) f1 = {(1, 3), (2, 5), (3, 7)}; A = {1, 2, 3}, B = {3, 5, 7}

(ii) f2 = {(2, a), (3, b), (4, c)}; A = {2, 3, 4}, B = {a, b, c}

🔥 Start Your JEE/NEET Prep at Just ₹1999 / month - Limited Offer! Check Now!

(iii) f3 = {(a, x), (b, x), (c, z), (d, z)}; A = {a, b, c, d,}, B = {x, y, z}. 

Solution:

cta3 image
create your own test
YOUR TOPIC, YOUR DIFFICULTY, YOUR PACE
start learning for free

(i) Consider f1 = {(1, 3), (2, 5), (3, 7)}; A = {1, 2, 3}, B = {3, 5, 7}

Injectivity:

f1 (1) = 3

f1 (2) = 5

f1 (3) = 7

⇒ Every element of A has different images in B.

So, f1 is one-one.

Surjectivity:

Co-domain of f1 = {3, 5, 7}

Range of f1 =set of images = {3, 5, 7}

⇒ Co-domain = range

So, f1 is onto.

(ii) Consider f2 = {(2, a), (3, b), (4, c)}; A = {2, 3, 4}, B = {a, b, c}

Injectivity:

f2 (2) = a

f2 (3) = b

f2 (4) = c

⇒ Every element of A has different images in B.

So, f2 is one-one.

Surjectivity:

Co-domain of f2 = {a, b, c}

Range of f2 = set of images = {a, b, c}

⇒ Co-domain = range

So, f2 is onto.

(iii) Consider f3 = {(a, x), (b, x), (c, z), (d, z)} ; A = {a, b, c, d,}, B = {x, y, z}

Injectivity:

f3 (a) = x

f3 (b) = x

f3 (c) = z

f3 (d) = z

⇒ a and b have the same image x.

Also c and d have the same image z

So, f3 is not one-one.

Surjectivity:

Co-domain of f3 ={x, y, z}

Range of f3 =set of images = {x, z}

So, the co-domain is not same as the range.

So, f3 is not onto.

Q. Let A = {−1, 0, 1} and f = {(x, x2) : x ∈ A}. Show that f : A → A is neither one-one nor onto.

Solution:

Given A = {−1, 0, 1} and f = {(x, x2): x ∈ A}

Also given that, f(x) = x2

Now we have to prove that given function neither one-one or nor onto.

Injectivity:

Let x = 1

Therefore f(1) = 12=1 and

f(-1)=(-1)2=1

⇒ 1 and -1 have the same images.

So, f is not one-one.

Surjectivity:

Co-domain of f = {-1, 0, 1}

f(1) = 12 = 1,

f(-1) = (-1)2 = 1 and

f(0) = 0

⇒ Range of f = {0, 1}

So, both are not same.

Hence, f is not onto

Q. Give an example of a function 

(i) Which is one-one but not onto.

(ii) Which is not one-one but onto.

(iii) Which is neither one-one nor onto.

Solution:

(i) Let f: Z → Z given by f(x) = 3x + 2

Let us check one-one condition on f(x) = 3x + 2

Injectivity:

Let x and y be any two elements in the domain (Z), such that f(x) = f(y).

f (x) = f(y)

⇒ 3x + 2 =3y + 2

⇒ 3x = 3y

⇒ x = y

⇒ f(x) = f(y)

⇒ x = y

So, f is one-one.

Surjectivity:

Let y be any element in the co-domain (Z), such that f(x) = y for some element x in Z(domain).

Let f(x) = y

⇒ 3x + 2 = y

⇒ 3x = y – 2

⇒ x = (y – 2)/3. It may not be in the domain (Z)

Because if we take y = 3,

x = (y – 2)/3 = (3-2)/3 = 1/3 ∉ domain Z.

So, for every element in the co domain there need not be any element in the domain such that f(x) = y.

Thus, f is not onto.

(ii) Example for the function which is not one-one but onto

Let f: Z → N ∪ {0} given by f(x) = |x|

Injectivity:

Let x and y be any two elements in the domain (Z),

Such that f(x) = f(y).

⇒ |x| = |y|

⇒ x = ± y

So, different elements of domain f may give the same image.

So, f is not one-one.

Surjectivity:

Let y be any element in the co domain (Z), such that f(x) = y for some element x in Z (domain).

f(x) = y

⇒ |x| = y

⇒ x = ± y

Which is an element in Z (domain).

So, for every element in the co-domain, there exists a pre-image in the domain.

Thus, f is onto.

(iii) Example for the function which is neither one-one nor onto.

Let f: Z → Z given by f(x) = 2x2 + 1

Injectivity:

Let x and y be any two elements in the domain (Z), such that f(x) = f(y).

f(x) = f(y)

⇒ 2x2+1 = 2y2+1

⇒ 2x2 = 2y2

⇒ x2 = y2

⇒ x = ± y

So, different elements of domain f may give the same image.

Thus, f is not one-one.

Surjectivity:

Let y be any element in the co-domain (Z), such that f(x) = y for some element x in Z (domain).

f (x) = y

⇒ 2x2+1=y

⇒ 2x2= y − 1

⇒ x2 = (y-1)/2

⇒ x = √ ((y-1)/2) ∉ Z always.

For example, if we take, y = 4,

x = ± √ ((y-1)/2)

= ± √ ((4-1)/2)

= ± √ (3/2) ∉ Z

So, x may not be in Z (domain).

Thus, f is not onto.

Q. Prove that the function f: N → N, defined by f(x) = x2 + x + 1, is one-one but not onto

Solution:

Given f: N → N, defined by f(x) = x2 + x + 1

Now we have to prove that given function is one-one

Injectivity:

Let x and y be any two elements in the domain (N), such that f(x) = f(y).

⇒ x2 + x + 1 = y2 + y + 1

⇒ (x2 – y2) + (x – y) = 0 `

⇒ (x + y) (x- y ) + (x – y ) = 0

⇒ (x – y) (x + y + 1) = 0

⇒ x – y = 0 [x + y + 1 cannot be zero because x and y are natural numbers

⇒ x = y

So, f is one-one.

Surjectivity:

When x = 1

x2 + x + 1 = 1 + 1 + 1 = 3

⇒ x2 + x +1 ≥ 3, for every x in N.

⇒ f(x) will not assume the values 1 and 2.

So, f is not onto.

Q. Classify the following function as injection, surjection or bijection:

(i) f: N → N given by f(x) = x2

(ii) f: Z → Z given by f(x) = x2

(iii) f: N → N given by f(x) = x3

Solution:

(i) Given f: N → N, given by f(x) = x2

Now we have to check for the given function is injection, surjection and bijection condition.

Injection condition:

Let x and y be any two elements in the domain (N), such that f(x) = f(y).

f(x) = f(y)

x2 = y2

x = y (We do not get ± because x and y are in N that is natural numbers)

So, f is an injection.

Surjection condition:

Let y be any element in the co-domain (N), such that f(x) = y for some element x in N (domain).

f(x) = y

x2= y

x = √y, which may not be in N.

For example, if y = 3,

x = √3 is not in N.

So, f is not a surjection.

Also f is not a bijection.

(ii) Given f: Z → Z, given by f(x) = x2

Now we have to check for the given function is injection, surjection and bijection condition.

Injection condition:

Let x and y be any two elements in the domain (Z), such that f(x) = f(y).

f(x) = f(y)

x2 = y2

x = ±y

So, f is not an injection.

Surjection test:

Let y be any element in the co-domain (Z), such that f(x) = y for some element x in Z (domain).

f(x) = y

x2 = y

x = ± √y which may not be in Z.

For example, if y = 3,

x = ± √ 3 is not in Z.

So, f is not a surjection.

Also f is not bijection.

(iii) Given f: N → N given by f(x) = x3

Now we have to check for the given function is injection, surjection and bijection condition.

Injection condition:

Let x and y be any two elements in the domain (N), such that f(x) = f(y).

f(x) = f(y)

x3 = y3

x = y

So, f is an injection

Surjection condition:

Let y be any element in the co-domain (N), such that f(x) = y for some element x in N (domain).

f(x) = y

x3= y

x = ∛y which may not be in N.

For example, if y = 3,

X = ∛3 is not in N.

So, f is not a surjection and f is not a bijection.

Functions Class 12 RD Sharma Solutions FAQs

How can students access the RD Sharma Class 12 Solutions Chapter 2 PDF?

Students can access the RD Sharma Class 12 Solutions Chapter 2 PDF online through various educational websites that offer free downloads or subscription-based services. Many platforms, including Infinity Learn, provide RD Sharma solutions in downloadable PDF format for easy access. Alternatively, students can also find these solutions in printed books available in bookstores or through online retailers.

Are RD Sharma Solutions for Class 12 Maths Chapter 2 helpful in exam preparation?

Yes, RD Sharma Solutions for Class 12 Maths Chapter 2 are extremely helpful in exam preparation. These solutions offer a step-by-step approach to solving problems, making complex concepts easier to understand. By practicing with these solutions, students can enhance their problem-solving skills and improve their understanding of key topics, which ultimately boosts their performance in exams.

Why should students prefer Infinity Learn RD Sharma Solutions for Class 12 Chapter 2?

Students should prefer Infinity Learn RD Sharma Solutions for Class 12 Chapter 2 because Infinity Learn provides high-quality, detailed, and easy-to-understand solutions tailored to meet the needs of Class 12 students. 

These solutions not only follow the latest syllabus but also focus on improving conceptual clarity. Infinity Learn offers interactive and engaging learning experiences, providing solutions with explanations that are effective for both self-study and guided learning.

Are the RD Sharma Solutions for Class 12 Maths Chapter 2 the best reference guide for the Class 12 students?

RD Sharma Solutions for Class 12 Maths Chapter 2 are considered one of the best reference guides for Class 12 students due to their clarity and comprehensive coverage of all types of problems in the chapter. 

They serve as an excellent resource for students to practice and perfect their problem-solving techniques. However, while they are highly beneficial, it’s also important for students to refer to other study materials and practice previous year’s papers for a holistic preparation strategy.

footerlogos
call

1800-419-4247 (customer support)

call

7996668865 (sales team)

mail

support@infinitylearn.com

map

Head Office:
Infinity Towers, N Convention Rd,
Surya Enclave, Siddhi Vinayak Nagar,
Kothaguda, Hyderabad,
Telangana 500084.

map

Corporate Office:
9th Floor, Shilpitha Tech Park,
3 & 55/4, Devarabisanahalli, Bellandur,
Bengaluru, Karnataka 560103

facebooktwitteryoutubelinkedininstagram
company
  • about us
  • our team
  • Life at Infinity Learn
  • IL in the news
  • blogs
  • become a Teacher
courses
  • Class 6 Foundation
  • Class 7 Foundation
  • Class 8 Foundation
  • Class 9 JEE Foundation
  • Class 10 JEE Foundation
  • Class 9 NEET Foundation
  • Class 10 NEET Foundation
  • JEE Course
  • NEET Course
support
  • privacy policy
  • refund policy
  • grievances
  • terms and conditions
  • Supplier Terms
  • Supplier Code of Conduct
  • Posh
more
  • IL for schools
  • Sri Chaitanya Academy
  • Score scholarships
  • YT Infinity Learn JEE
  • YT - Infinity Learn NEET
  • YT Infinity Learn 9&10
  • Telegram Infinity Learn NEET
  • Telegram Infinity Learn JEE
  • Telegram Infinity Learn 9&10

Free study material

JEE
  • JEE Revision Notes
  • JEE Study Guide
  • JEE Previous Year's Papers
NEET
  • NEET previous year's papers
  • NEET study guide
CBSE
  • CBSE study guide
  • CBSE revision questions
POPULAR BOOKS
  • RD Sharma
NCERT SOLUTIONS
  • Class 12 NCERT Solutions
  • Class 11 NCERT Solutions
  • Class 10 NCERT Solutions
  • Class 9 NCERT Solutions
  • Class 8 NCERT Solutions
  • Class 7 NCERT Solutions
  • Class 6 NCERT Solutions
NCERT EXEMPLAR
  • Class 12 NCERT exemplar
  • Class 11 NCERT exemplar
  • Class 10 NCERT exemplar
  • Class 9 NCERT exemplar
  • Class 8 NCERT exemplar
  • Class 7 NCERT exemplar
  • Class 6 NCERT exemplar
SUBJECT
  • Maths
  • Science
  • Physics
  • Chemistry
  • Biology
ENGINEERING ENTRANCE EXAM
  • BITSAT Exam
  • VITEE Exam
  • SRMJEE Exam
  • KIIT Exam
  • Manipal CET
  • COMEDK Exam
  • TS-EAMCET
  • AP-EAMCET
  • MH-CET Exam
  • Amrita University Exam
  • CUET Exam
RANK PREDICTOR
  • JEE Main Rank College Predictor
  • NEET Rank Predictor
STATE BOARDS
  • Telangana Board
  • Andhra Pradesh Board
  • Kerala Board
  • Karnataka Board
  • Maharashtra Board
  • Madhya Pradesh Board
  • Uttar Pradesh Board
  • Bihar Board
  • West Bengal Board
  • JEE Revision Notes
  • JEE Study Guide
  • JEE Previous Year's Papers
  • NEET previous year's papers
  • NEET study guide
  • CBSE study guide
  • CBSE revision questions
  • RD Sharma
  • Class 12 NCERT Solutions
  • Class 11 NCERT Solutions
  • Class 10 NCERT Solutions
  • Class 9 NCERT Solutions
  • Class 8 NCERT Solutions
  • Class 7 NCERT Solutions
  • Class 6 NCERT Solutions
  • Class 12 NCERT exemplar
  • Class 11 NCERT exemplar
  • Class 10 NCERT exemplar
  • Class 9 NCERT exemplar
  • Class 8 NCERT exemplar
  • Class 7 NCERT exemplar
  • Class 6 NCERT exemplar
  • Maths
  • Science
  • Physics
  • Chemistry
  • Biology
  • BITSAT Exam
  • VITEE Exam
  • SRMJEE Exam
  • KIIT Exam
  • Manipal CET
  • COMEDK Exam
  • TS-EAMCET
  • AP-EAMCET
  • MH-CET Exam
  • Amrita University Exam
  • CUET Exam
  • JEE Main Rank College Predictor
  • NEET Rank Predictor
  • Telangana Board
  • Andhra Pradesh Board
  • Kerala Board
  • Karnataka Board
  • Maharashtra Board
  • Madhya Pradesh Board
  • Uttar Pradesh Board
  • Bihar Board
  • West Bengal Board

© Rankguru Technology Solutions Private Limited. All Rights Reserved

follow us
facebooktwitteryoutubelinkedininstagram
Related Blogs
RD Sharma Class 11 - Chapter 7: Trigonometric Ratios of Compound AnglesRD Sharma Class 11 Solutions for Chapter 6: Graphs of Trigonometric FunctionsRD Sharma Solutions for Class 12 Maths Chapter 24 – Scalar or Dot ProductRD Sharma Solutions Class 9 Maths Chapter 23 -Graphical Representation of Statistical DataRD Sharma Solutions Class 9 Maths Chapter 22 - Tabular Representation of Statistical DataRD Sharma Solutions Class 9 Maths Chapter 21 - Surface Area and Volume of a SphereRD Sharma Solutions for Class 12 Maths Chapter 23 – Algebra of VectorsRD Sharma Class 11 Solutions for Chapter 5: Trigonometric FunctionsRD Sharma Solutions for Class 12 Maths Chapter 18 Maxima and Minima – PDF DownloadRD Sharma Class 11 Solutions for Chapter 4: Measurement of Angles