RD Sharma Solutions for Class 12 Maths Chapter 1 Relations – PDF Download

RD Sharma Solutions for Class 12 Maths Chapter 1 – Relations are designed to help students achieve excellent marks in their board exams. The RD Sharma textbook for Class 12 follows the latest syllabus prescribed by the CBSE (Central Board of Secondary Education). At the end of each chapter, the textbook provides exercises with multiple-choice questions, along with a summary for quick revision of key concepts and formulas.

For success in board exams, it is highly recommended to refer to RD Sharma Solutions for Class 12. These solutions provide clear explanations of all the topics in the chapter.

Fill out the form for expert academic guidance
+91

Students can access and download Chapter 1 – Relations through the links provided. This chapter focuses on the concept of relations and their types, with RD Sharma Solutions covering all related topics. Key topics in this chapter include:

  • Types of Relations
  • Void Relation
  • Universal Relation
  • Identity Relation
  • Reflexive Relation
  • Symmetric Relation
  • Transitive Relation
  • Antisymmetric Relation
  • Equivalence Relation
  • Theorems Based on Relations

Download RD Sharma Solutions for Class 12 Maths Chapter 1 Relations PDF

RD Sharma Class 12 Maths Solutions for Chapter 1 – Relations cover all the questions from the textbook, crafted by expert Mathematics teachers at Infinity Learn. Download our free PDF of Chapter 1 – Relations RD Sharma Solutions for Class 12 to boost your performance in board exams and competitive exams.

Unlock the full solution & master the concept
Get a detailed solution and exclusive access to our masterclass to ensure you never miss a concept

Access answers to RD Sharma Solutions Class 12 Maths Chapter 1 – Relations

Q. Three relations R1, R2 and R3 are defined on a set A = {a, b, c} as follows:

R1 = {(a, a), (a, b), (a, c), (b, b), (b, c), (c, a), (c, b), (c, c)}

Ready to Test Your Skills?
Check Your Performance Today with our Free Mock Tests used by Toppers!
Take Free Test

R2 = {(a, a)}

R3 = {(b, c)}

R4 = {(a, b), (b, c), (c, a)}.

Find whether or not each of the relations R1, R2, R3, R4 on A is 

cta3 image
create your own test
YOUR TOPIC, YOUR DIFFICULTY, YOUR PACE
start learning for free

(i) reflexive 

(ii) symmetric

(iii) transitive.

Solution:

(i) Consider R1

Given R1 = {(a, a), (a, b), (a, c), (b, b), (b, c), (c, a), (c, b), (c, c)}

Now we have check R1 is reflexive, symmetric and transitive

Reflexive:

Given (a, a), (b, b) and (c, c) ∈ R1

So, R1 is reflexive.

Symmetric:

We see that the ordered pairs obtained by interchanging the components of R1 are also in R1.

So, R1 is symmetric.

Transitive:

Here, (a, b) ∈R1, (b, c) ∈R1 and also (a, c) ∈R1

So, R1 is transitive.

(ii) Consider R2

Given R2 = {(a, a)}

Reflexive:

Clearly (a, a) ∈R2.

So, R2 is reflexive.

Symmetric:

Clearly (a, a) ∈R

⇒ (a, a) ∈R.

So, R2 is symmetric.

Transitive:

R2 is clearly a transitive relation, since there is only one element in it.

(iii) Consider R3

Given R3 = {(b, c)}

Reflexive:

Here,(b, b)∉ R3 neither (c, c) ∉ R3

So, R3 is not reflexive.

Symmetric:

Here, (b, c) ∈R3, but (c, b) ∉R3

So, Ris not symmetric.

Transitive:

Here, R3 has only two elements.

Hence, R3 is transitive.

(iv) Consider R4

Given R4 = {(a, b), (b, c), (c, a)}.

Reflexive:

Here, (a, a) ∉ R4, (b, b) ∉ R4 (c, c) ∉ R4

So, R4 is not reflexive.

Symmetric:

Here, (a, b) ∈ R4, but (b, a) ∉ R4.

So, R4 is not symmetric

Transitive:

Here, (a, b) ∈R4, (b, c) ∈R4, but (a, c) ∉R4

R4 is not transitive.

Q. Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive:

(i) R= {(x, y): x and y work at the same place}

(ii) R= {(x, y): x and y live in the same locality}

(iii) R= {(x, y): x is wife of y}

(iv) R= {(x, y): x is father of y}

Solution:

(i) Given R= {(x, y): x and y work at the same place}

Now we have to check whether the relation is reflexive:

Let x be an arbitrary element of R.

Then, x ∈R

⇒ x and x work at the same place is true since they are the same.

⇒(x, x) ∈R [condition for reflexive relation]

So, R is a reflexive relation.

Now let us check Symmetric relation:

Let (x, y) ∈R

⇒x and y work at the same place [given]

⇒y and x work at the same place

⇒(y, x) ∈R

So, R is a symmetric relation.

Transitive relation:

Let (x, y) ∈R and (y, z) ∈R.

Then, x and y work at the same place. [Given]

y and z also work at the same place. [(y, z) ∈R]

x, y and z all work at the same place.

x and z work at the same place.

(x, z) ∈R

So, R is a transitive relation.

Hence R is reflexive, symmetric and transitive.

(ii) Given R= {(x, y): x and y live in the same locality}

Now we have to check whether the relation R is reflexive, symmetric and transitive.

Let x be an arbitrary element of R.

Then, x ∈R

It is given that x and x live in the same locality is true since they are the same.

So, R is a reflexive relation.

Symmetry:

Let (x, y) ∈ R

⇒ x and y live in the same locality [given]

⇒ y and x live in the same locality

⇒ (y, x) ∈ R

So, R is a symmetric relation.

Transitivity:

Let (x, y) ∈R and (y, z) ∈R.

Then,

x and y live in the same locality and y and z live in the same locality

⇒ x, y and z all live in the same locality

⇒ x and z live in the same locality

⇒ (x, z) ∈ R

So, R is a transitive relation.

Hence R is reflexive, symmetric and transitive.

(iii) Given R= {(x, y): x is wife of y}

Now we have to check whether the relation R is reflexive, symmetric and transitive.

First let us check whether the relation is reflexive:

Let x be an element of R.

Then, x is wife of x cannot be true.

⇒ (x, x) ∉R

So, R is not a reflexive relation.

Symmetric relation:

Let (x, y) ∈R

⇒ x is wife of y

⇒ x is female and y is male

⇒ y cannot be wife of x as y is husband of x

⇒ (y, x) ∉R

So, R is not a symmetric relation.

Transitive relation:

Let (x, y) ∈R, but (y, z) ∉R

Since x is wife of y, but y cannot be the wife of z, y is husband of x.

⇒ x is not the wife of z

⇒(x, z) ∈R

So, R is a transitive relation.

(iv) Given R= {(x, y): x is father of y}

Now we have to check whether the relation R is reflexive, symmetric and transitive.

Reflexivity:

Let x be an arbitrary element of R.

Then, x is father of x cannot be true since no one can be father of himself.

So, R is not a reflexive relation.

Symmetry:

Let (x, y) ∈R

⇒ x is father of y

⇒ y is son/daughter of x

⇒ (y, x) ∉R

So, R is not a symmetric relation.

Transitivity:

Let (x, y) ∈R and (y, z) ∈R.

Then, x is father of y and y is father of z

x is grandfather of z

(x, z) ∉R

So, R is not a transitive relation.

Q. The following relation is defined on the set of real numbers.
 

(i) aRb if a – b > 0

(ii) aRb iff 1 + a b > 0

(iii) aRb if |a| ≤ b.

Find whether relation is reflexive, symmetric or transitive.

Solution:

(i) Consider aRb if a – b > 0

Now for this relation we have to check whether it is reflexive, transitive and symmetric.

Reflexivity:

Let a be an arbitrary element of R.

Then, a ∈ R

But a − a = 0 ≯ 0

So, this relation is not reflexive.

Symmetry:

Let (a, b) ∈ R

a − b > 0

− (b − a) >0

b − a < 0

So, the given relation is not symmetric.

Transitivity:

Let (a, b) ∈R and (b, c) ∈R.

Then, a − b > 0 and b − c > 0

Adding the two, we get

a – b + b − c > 0

a – c > 0

(a, c) ∈ R.

So, the given relation is transitive.

(ii) Consider aRb iff 1 + a b > 0

Now for this relation we have to check whether it is reflexive, transitive and symmetric.

Reflexivity:

Let a be an arbitrary element of R.

Then, a ∈ R

1 + a × a > 0

i.e. 1 + a2 > 0 [Since, square of any number is positive]

So, the given relation is reflexive.

Symmetry:

Let (a, b) ∈ R

1 + a b > 0

1 + b a > 0

(b, a) ∈ R

So, the given relation is symmetric.

Transitivity:

Let (a, b) ∈R and (b, c) ∈R

1 + a b > 0 and 1 + b c >0

But 1+ ac ≯ 0

(a, c) ∉ R

So, the given relation is not transitive.

(iii) Consider aRb if |a| ≤ b.

Now for this relation we have to check whether it is reflexive, transitive and symmetric.

Reflexivity:

Let a be an arbitrary element of R.

Then, a ∈ R [Since, |a|=a]

|a|≮ a

So, R is not reflexive.

Symmetry:

Let (a, b) ∈ R

|a| ≤ b

|b| ≰ a for all a, b ∈ R

(b, a) ∉ R

So, R is not symmetric.

Transitivity:

Let (a, b) ∈ R and (b, c) ∈ R

|a| ≤ b and |b| ≤ c

Multiplying the corresponding sides, we get

|a| × |b| ≤ b c

|a| ≤ c

(a, c) ∈ R

Thus, R is transitive.

Q. Prove that every identity relation on a set is reflexive, but the converse is not necessarily true.

Solution:

Let A be a set.

Then, Identity relation IA=IA is reflexive, since (a, a) ∈ A ∀a

The converse of it need not be necessarily true.

Consider the set A = {1, 2, 3}

Here,

Relation R = {(1, 1), (2, 2) , (3, 3), (2, 1), (1, 3)} is reflexive on A.

However, R is not an identity relation.

RD Sharma Solutions for Class 12 Maths Chapter 1 FAQs

How can I effectively use RD Sharma Solutions for Class 12 Maths Chapter 1?

  • Read the theory first: Understand core concepts before attempting exercises.
  • Practice questions: Try solving each problem yourself, then check the stepwise solutions.
  • Review mistakes: Analyze errors and learn from the detailed explanations.
  • Use for revision: Summaries and solved examples help with quick exam prep.
  • Explore different methods: Learn multiple approaches to improve problem-solving skills.

Why is RD Sharma Solutions for Class 12 Maths Chapter 1 important for board exams?

  • Covers the complete CBSE syllabus
  • Stepwise solutions: Helps learn the correct methods for full marks.
  • Variety of questions: Prepares you for all exam formats (MCQs, HOTS, etc.).
  • Strengthens concepts: Builds a solid foundation in relations and functions.
  • Ideal for revision and self-assessment

Why are RD Sharma Solutions for Class 12 Maths Chapter 1 the best study guide?

  • Comprehensive coverage: All textbook questions solved.
  • Expert, accurate solutions: Reliable and easy to understand.
  • Step-by-step explanations: Great for all learning levels.
  • Excellent revision tool: Summaries and key points included.
  • Boosts confidence and logical thinking

Are RD Sharma Solutions enough for board exams?

Yes, they cover the syllabus thoroughly and are sufficient for board preparation.

Are the solutions updated as per the latest syllabus?

Yes, they are regularly updated for the current CBSE curriculum.