The reaction v1A+v2B⟶products is first-order with respect to A and zero-order with respect to B. If the reaction is started with [A]0and [B]0, the integrated rate expression of this reaction would be

# The reaction ${v}_{1}\mathrm{A}+{v}_{2}\mathrm{B}⟶$products is first-order with respect to A and zero-order with respect to B. If the reaction is started with ${\left[\mathrm{A}\right]}_{0}$and ${\left[\mathrm{B}\right]}_{0}$, the integrated rate expression of this reaction would be

1. A

$\mathrm{ln}\frac{\left[\mathrm{A}{\right]}_{0}}{\left[\mathrm{A}{\right]}_{0}-x}={k}_{1}t$

2. B

$\mathrm{ln}\frac{\left[\mathrm{A}{\right]}_{0}}{\left[\mathrm{A}{\right]}_{0}-{v}_{1}x}={k}_{1}t$

3. C

$\mathrm{ln}\frac{\left[\mathrm{A}{\right]}_{0}}{\left[\mathrm{A}{\right]}_{0}-{v}_{1}x}={v}_{1}{k}_{1}t$

4. D

$\mathrm{ln}\frac{\left[\mathrm{A}{\right]}_{0}}{\left[\mathrm{A}{\right]}_{0}-{v}_{1}x}={v}_{1}{k}_{1}t$

where x is the extent of reaction divided by constant volume.

Fill Out the Form for Expert Academic Guidance!l

+91

Live ClassesBooksTest SeriesSelf Learning

Verify OTP Code (required)

### Solution:

We have

+91

Live ClassesBooksTest SeriesSelf Learning

Verify OTP Code (required)