Search for: ∫{1+2tanx(tanx+secx)}1/2dx is equal ∫{1+2tanx(tanx+secx)}1/2dx is equal Alogsecx(secx−tanx)+CBlogcosec(secx+tanx)+CClogsecx(secx+tanx)+CDlog(secx+tanx)+C Register to Get Free Mock Test and Study Material +91 Verify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution: We have, ⇒ I=∫{1+2tanx(tanx+secx)}1/2dx⇒ I=∫1+tan2x+tan2x+2tanxsecx1/2dx⇒ I=∫sec2x+tan2x+2tanxsecx1/2dx⇒ I =∫(tanx+secx)dx⇒ I =logsecx+log(secx+tanx)+C⇒ I =logsecx(secx+tanx)+CPost navigationPrevious: ∫1(x−1)3(x+2)51/4dx is klx−1x+21/k+C then k+l=Next: ∫cos3xelog(sinx)dx is equal to Related content JEE Advanced 2023 NEET Rank Assurance Program | NEET Crash Course 2023 JEE Main 2023 Question Papers with Solutions JEE Main 2024 Syllabus Best Books for JEE Main 2024 JEE Advanced 2024: Exam date, Syllabus, Eligibility Criteria JEE Main 2024: Exam dates, Syllabus, Eligibility Criteria JEE 2024: Exam Date, Syllabus, Eligibility Criteria NCERT Solutions For Class 6 Maths Data Handling Exercise 9.3 JEE Crash Course – JEE Crash Course 2023