Search for: MathematicsIf 3−23024yyxx=333y3y1010, then the values of x and y isIf 3−23024yyxx=333y3y1010, then the values of x and y isAx=43,y=1Bx=32,y=2Cx=5,y=43Dx=4,y=73 Fill Out the Form for Expert Academic Guidance!l Grade ---Class 6Class 7Class 8Class 9Class 10Class 11Class 12 Target Exam JEENEETCBSE +91 Preferred time slot for the call ---9 am10 am11 am12 pm1 pm2 pm3 pm4 pm5 pm6 pm7 pm8pm9 pm10pmPlease indicate your interest Live ClassesBooksTest SeriesSelf LearningLanguage ---EnglishHindiMarathiTamilTeluguMalayalamAre you a Sri Chaitanya student? NoYesVerify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution:3y−2x3y−2x3y3y2y+4x2y+4x=333y3y1010Comparing elements we have3y−2x=32y+4x=10Solving (1) and (2), we get x=32,y=2Related content Area of Square Area of Isosceles Triangle Pythagoras Theorem Triangle Formulae Perimeter of Triangle Formula Area Formulae Volume of Cone Formula Matrices and Determinants_mathematics Critical Points Solved Examples Type of relations_mathematics