Search for: MathematicsIf A+2B=1206−33−531, and 2A−B=2−152−16012, then tr(A)−tr(B) isIf A+2B=1206−33−531, and 2A−B=2−152−16012, then tr(A)−tr(B) isA1B2C3D4 Fill Out the Form for Expert Academic Guidance!l Grade ---Class 6Class 7Class 8Class 9Class 10Class 11Class 12 Target Exam JEENEETCBSE +91 Preferred time slot for the call ---9 am10 am11 am12 pm1 pm2 pm3 pm4 pm5 pm6 pm7 pm8pm9 pm10pmPlease indicate your interest Live ClassesBooksTest SeriesSelf LearningLanguage ---EnglishHindiMarathiTamilTeluguMalayalamAre you a Sri Chaitanya student? NoYesVerify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution:A+2B=1206−33−531tr(A+2B)=−1tr(A)+2tr(B)=−12A−B=2−152−16012tr(2A−B)=32tr(A)−tr(B)=3Solving (1) and (2), we get tr(A)=1,tr(B)=−1tr(A)−tr(B)=2Related content Area of Square Area of Isosceles Triangle Pythagoras Theorem Triangle Formulae Perimeter of Triangle Formula Area Formulae Volume of Cone Formula Matrices and Determinants_mathematics Critical Points Solved Examples Type of relations_mathematics