If the equations 2ax2−3bx+4c=0 and  3×2−4x+5=0  have a common root, then (a+b)/(b+c) is equal to (a,b,c∈R)

 If the equations 2ax23bx+4c=0 and  3x24x+5=0  have a common root, then (a+b)/(b+c) is equal to (a,b,cR)

  1. A

    12

  2. B

    335

  3. C

    3431

  4. D

    2931

    Register to Get Free Mock Test and Study Material

    +91

    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    Since, the second equation has imaginary roots. 
     2a3=3b4=4c5=k a=3k2,b=4k3,c=5k4 a+bb+c=3k2+4k34k3+5k4=3431

    Chat on WhatsApp Call Infinity Learn

      Register to Get Free Mock Test and Study Material

      +91

      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.