Search for: If ∫1×3+x4dx=Ax2+Bx+logx|x+1|+C, then 2A+2B=If ∫1x3+x4dx=Ax2+Bx+logx|x+1|+C, then 2A+2B= Register to Get Free Mock Test and Study Material +91 Verify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution:We have, I=∫1x3+x4dx=∫1x3(x+1)dx=∫1x2(x(x+1))dx⇒I=∫1x21x−1x+1dx=∫1x1x2−1x(x+1)dx⇒I=∫1x1x2−1x−1x+1dx=∫1x3−1x2+1x(x+1)dx⇒I=∫1x3−1x2+1x−1x+1dx=−121x2+1x+logxx+1+C∴A=−12 and B=1⇒2A+2B=1Post navigationPrevious: ∫1sin6x+cos6xdx is equal toNext: If u=∫eaxsinbxdx and v=∫eaxcosbxdx, then tan−1uv+tan−1ba equalsRelated content JEE Main 2023 Question Papers with Solutions JEE Main 2024 Syllabus Best Books for JEE Main 2024 JEE Advanced 2024: Exam date, Syllabus, Eligibility Criteria JEE Main 2024: Exam dates, Syllabus, Eligibility Criteria JEE 2024: Exam Date, Syllabus, Eligibility Criteria NCERT Solutions For Class 6 Maths Data Handling Exercise 9.3 JEE Crash Course – JEE Crash Course 2023 NEET Crash Course – NEET Crash Course 2023 JEE Advanced Crash Course – JEE Advanced Crash Course 2023