Search for: Mathematics If A=0−tanα/2tanα/20 and I is a 2×2 unit matrix, then (I−A)cosα−sinαsinαcosα If A=0−tanα/2tanα/20 and I is a 2×2 unit matrix, then (I−A)cosα−sinαsinαcosα A−I+ABI+AC−I−ADNone of these Fill Out the Form for Expert Academic Guidance!l Grade ---Class 6Class 7Class 8Class 9Class 10Class 11Class 12 Target Exam JEENEETCBSE +91 Preferred time slot for the call ---9 am10 am11 am12 pm1 pm2 pm3 pm4 pm5 pm6 pm7 pm8pm9 pm10pmPlease indicate your interest Live ClassesBooksTest SeriesSelf LearningLanguage ---EnglishHindiMarathiTamilTeluguMalayalamAre you a Sri Chaitanya student? NoYesVerify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution: Since I=1 00 1 and given A=0-tanα/2tanα/20∴I−A=1tanα/2-tanα/21 Now, (I−A)cosα−sinαsinαcosα=1tanα/2−tanα/21cosα−sinαsinαcosα=cosα+sinαtanα/2−sinα+tanα/2cosα-tanα/2cosα+sinαcosα+sinαtanα/2=cosαcosα/2+sinαsinα/2cosα/2sinα/2cosα-sinαcosα/2cosα/2-sinα/2cosα+sinαcosα/2cosα/2cosαcosα/2+sinαsinα/2cosα/2=cosα-α/2cosα/2-sinα-α/2cosα/2sinα-α/2cosα/2cosα-α/2cosα/2=1-tanα/2tanα/21=I+ARelated content Area of Square Area of Isosceles Triangle Pythagoras Theorem Triangle Formulae Perimeter of Triangle Formula Area Formulae Volume of Cone Formula Matrices and Determinants_mathematics Critical Points Solved Examples Type of relations_mathematics