MathematicsIf A is idemponent matrix, then find the value of  (A+I)n, ∀n∈N Where I is the identity matrix having the same order of A.

If A is idemponent matrix, then find the value of  (A+I)n, nN Where I is the identity matrix having the same order of A.

  1. A

    I+(2n-1)A

  2. B

    I-(2n-1)A

  3. C

    3I+(2n-1)A

  4. D

    4I+(2n-1)A

    Fill Out the Form for Expert Academic Guidance!l



    +91



    Live ClassesBooksTest SeriesSelf Learning



    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

     A is idemponent matrix

     A2=A,

    similarly A=A2=A3=A4=...=An             ...(i)

    Now, (A+I)n=(I+A)n

    =I+C1   nA+C2   nA2+C3   nA3+...+Cn   nAn =I+(C1   n+C2   n+C3   n+...+Cn   n)A              [from Eq.(i)] =I+(2n-1)A

    Hence, (A+I)n=I+(2n-1)A,  nN.

    Chat on WhatsApp Call Infinity Learn

      Talk to our academic expert!



      +91



      Live ClassesBooksTest SeriesSelf Learning



      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.