Q.

If α, β are the roots of the equation x25+3log355log53x+33log35135log53231=0 then the equation, whose roots are α+1β and β+1α,

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

3x2 – 10x – 4 = 0

b

3x2 – 10x + 2 = 0

c

3x2 – 20x + 16 = 0

d

3x2 – 20x – 12 = 0

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

Bonus because ‘x’ is missing the correct will be,

x25+3log355log53x+33log35135log53231=03log35=3log35log35log53=3log35log53=3log35log53=5log533log353=3log35log5323=3log35log532/3                                                =5log532/3

So, equation is x2 – 5x – 3 = 0 and roots are α & β

α+β=5; αβ=-3

New roots are α+1β & β+1α

i.e., αβ+1β & αβ+1α  i.e., -2β & -2α

Let -2α=t  α=-2t

As α2-5α-3=0

2t252t3=04t2+10t3=04+10t3t2=03t210t4=0 i.e., 3x210x4=0

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon