MathematicsIf α, β are the roots of the equation x2−5+3log3⁡5−5log5⁡3x+33log3⁡513−5log5⁡323−1=0 then the equation, whose roots are α+1β and β+1α,

If α, β are the roots of the equation x25+3log355log53x+33log35135log53231=0 then the equation, whose roots are α+1β and β+1α,

  1. A

    3x2 – 20x – 12 = 0

  2. B

    3x2 – 10x – 4 = 0

  3. C

    3x2 – 10x + 2 = 0

  4. D

    3x2 – 20x + 16 = 0

    Register to Get Free Mock Test and Study Material



    +91



    Live ClassesRecorded ClassesTest SeriesSelf Learning

    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    Bonus because ‘x’ is missing the correct will be,

    x25+3log355log53x+33log35135log53231=03log35=3log35log35log53=3log35log53=3log35log53=5log533log353=3log35log5323=3log35log532/3                                                =5log532/3

    So, equation is x2 – 5x – 3 = 0 and roots are α & β

    α+β=5; αβ=-3

    New roots are α+1β & β+1α

    i.e., αβ+1β & αβ+1α  i.e., -2β & -2α

    Let -2α=t  α=-2t

    As α2-5α-3=0

    2t252t3=04t2+10t3=04+10t3t2=03t210t4=0 i.e., 3x210x4=0

    Chat on WhatsApp Call Infinity Learn

      Talk to our academic expert!



      +91



      Live ClassesRecorded ClassesTest SeriesSelf Learning

      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.