MathematicsIf B, C are square matrices of order n and if A=B+C, BC=CB, C2=0, then for any positive integer p, Ap+1.

If B, C are square matrices of order n and if A=B+C, BC=CB, C2=0, then for any positive integer pAp+1.

  1. A

    Bp[B+(p+1)C]

  2. B

    Bp[B+(p-1)C]

  3. C

    Bp[B-(p-1)C]

  4. D

    Bn[B+(p+1)C]

    Fill Out the Form for Expert Academic Guidance!l



    +91



    Live ClassesBooksTest SeriesSelf Learning



    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

     A=B+CAp+1=(B+C)p+1  =C0   p+1Bp+1+C1   p+1BpC+C2   p+1Bp-1C2+...+Cp+1   p+1Cp+1 =Bp+1+C1   p+1BpC+0+0+...      [C2=0C2=C3=...=0] =Bp[B+(p+1)C]

    Hence, Ap+1=Bp[B+(p+1)C]

    Chat on WhatsApp Call Infinity Learn

      Talk to our academic expert!



      +91



      Live ClassesBooksTest SeriesSelf Learning



      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.