MathematicsIf g be the inverse of function f, then  g(x)=f−1(x)⇒f(g(x))=x⇒f|(g(x))g|(x)=1⇒g|(x)=1f|(g(x)) also , if f(α)=β, then g(β)=αFrom (1), g|(β)=1f|[g(β)]∴g|(β)=1f|(α), where  f(α)=βIf  f:R→R defined by f(x)=x5+e2x and g is the inverse of f , then g|(1)=

If g be the inverse of function f, then  g(x)=f1(x)f(g(x))=xf|(g(x))g|(x)=1g|(x)=1f|(g(x)) also , if f(α)=β, then g(β)=α

From (1), g|(β)=1f|[g(β)]g|(β)=1f|(α), where  f(α)=β

If  f:RR defined by f(x)=x5+e2x and g is the inverse of f , then g|(1)=

  1. A

    2

  2. B

    1

  3. C

    12

  4. D

    none of these

    Fill Out the Form for Expert Academic Guidance!l



    +91



    Live ClassesBooksTest SeriesSelf Learning



    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    f(x)=x5+e2x

    f(0)=0+e0=1

    f|(x)=5.x4+2.e2xf|(0)=5(0)+2(1)=2

    (gof)(x)=xg[f(x)]=x

    g|f(x).f|(x)=1

    g|f(x)=1f|(x)

    put  x=0

    g|(f(0))=1f|(0)

    g|(1)=12

    Chat on WhatsApp Call Infinity Learn

      Talk to our academic expert!



      +91



      Live ClassesBooksTest SeriesSelf Learning



      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.