If x2-y2+3x=5y then dydx=

# If ${\mathrm{x}}^{2}-{\mathrm{y}}^{2}+3\mathrm{x}=5\mathrm{y}$ then $\frac{\mathrm{dy}}{\mathrm{dx}}=$

1. A

$\frac{\sqrt{\mathrm{y}}\left(4\mathrm{x}\sqrt{\mathrm{x}}-\sqrt{\mathrm{y}}\right)}{\sqrt{\mathrm{x}}\left(2\sqrt{\mathrm{y}}+\sqrt{\mathrm{x}}\right)}$

2. B

$\frac{\sqrt{\mathrm{y}}\left(1-2\sqrt{\mathrm{xy}}-\mathrm{y}\right)}{\sqrt{\mathrm{x}}\left(1+2\sqrt{\mathrm{xy}}+\mathrm{x}\right)}$

3. C

$\frac{2\mathrm{x}+3}{2\mathrm{y}+5}$

4. D

$\frac{\sqrt{1-{y}^{2}}-\sqrt{\left(1-{x}^{2}\right)\left(1-{y}^{2}\right)}}{\sqrt{1-{x}^{2}}-\sqrt{\left(1-{x}^{2}\right)\left(1-{y}^{2}\right)}}$

Fill Out the Form for Expert Academic Guidance!l

+91

Live ClassesBooksTest SeriesSelf Learning

Verify OTP Code (required)

### Solution:

The given equation is ${\mathrm{x}}^{2}-{\mathrm{y}}^{2}+3\mathrm{x}=5\mathrm{y}$

Use implicit differentiation, differentiate both sides with respect to $x$

$\begin{array}{rcl}2x-2y\frac{dy}{dx}+3& =& 5\frac{dy}{dx}\\ \frac{dy}{dx}\left(2y+5\right)& =& 2x+3\\ \frac{dy}{dx}& =& \overline{)\frac{\mathbf{2}\mathbf{x}\mathbf{+}\mathbf{3}}{\mathbf{2}\mathbf{y}\mathbf{+}\mathbf{5}}}\end{array}$

## Related content

 Area of Square Area of Isosceles Triangle Pythagoras Theorem Triangle Formulae Perimeter of Triangle Formula Area Formulae Volume of Cone Formula Matrices and Determinants_mathematics Critical Points Solved Examples Type of relations_mathematics

+91

Live ClassesBooksTest SeriesSelf Learning

Verify OTP Code (required)