MathematicsIf y=x3−8x+7and x=f(t) and  when  t=0,x=3and  dydx=2, then dxdtat  t=0 is

If y=x38x+7and x=f(t) and  when  t=0,x=3and  dydx=2, then dxdtat  t=0 is

  1. A

    219

  2. B

    218

  3. C

    217

  4. D

    211

    Register to Get Free Mock Test and Study Material



    +91



    Live ClassesRecorded ClassesTest SeriesSelf Learning

    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    y=x38x+7;x=f(t),t=0,x=3  and  dydx=2

    x=f(t)x=f(0),x=f(t)dxdt=f1(t)

    y=(f(t))38f(t)+7

    dydx=3.(f(t))2f1(t)8f1(t)

    at  t=0

    2=3(f(0))2.f1(t)8.f1(t)

    2=3(3)2.f1(t)8.f1(t)

    f|(t)=219

    Chat on WhatsApp Call Infinity Learn

      Talk to our academic expert!



      +91



      Live ClassesRecorded ClassesTest SeriesSelf Learning

      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.