Let a, b, c, d and and e be real numbers such that a>b>0 and c>0. if 1a,1b,1c are in A.P.,  b,c,d are in G.P. and c, d, e are in A. P., then ab2(2a−b)2 is equal to

Let a, b, c, d and and e be real numbers such that a>b>0 and c>0if 1a,1b,1c are in A.P.,  b,c,d are in G.P. and c, d, e are in A. P., then ab2(2ab)2 is equal to

  1. A

    c

  2. B

    de

  3. C

    e

  4. D

    d

    Register to Get Free Mock Test and Study Material



    +91



    Live ClassesRecorded ClassesTest SeriesSelf Learning

    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    Let r be the common ratio of the G.P. b, c, d, then

    b=cr,c=c,d=cr

    As c, d, e, are in A.P. 

    e=2dc=2crc=c(2r1)

    Also 1a,1b,1c are in A.P.

    1a=2b1c=2rc1c=2r1c

    Also 2b1a=1c

    2abab=1cab2(2ab)2=ab2(ab/c)2=c2a=c(2r1)=e

    Chat on WhatsApp Call Infinity Learn

      Talk to our academic expert!



      +91



      Live ClassesRecorded ClassesTest SeriesSelf Learning

      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.