Let f(x)=ax,x<2ax2+bx+3,x≥2 If f is differentiable for all x then the value of (a, b) is equal to

Let f(x)=ax,x<2ax2+bx+3,x2 If f is differentiable for all x then the value of (a, b) is equal to

  1. A

    (1, 2)

  2. B

    32,92

  3. C

    34,92

  4. D

    34,94

    Register to Get Free Mock Test and Study Material



    +91



    Live ClassesRecorded ClassesTest SeriesSelf Learning

    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    limx2f(x)=limx2ax=2a and limx2+f(x)=limx2+

    ax2+bx+3=4a+2b+3

    Since f is differentiable so continuous, hence 

    2a+2b+3=0

    Also limh0+f(2+h)f(2)h

    =limh0+a(2+h)2+b(2+h)+3(4a+2b+3)h

    =limh0+ah2+4ah+bhh 

    =4a+b

    limh0f(2+h)f(2)h

    =limh0a(2+h)(4a+2b+3)h

    =a( using (i)) 

    So a=4a+b3a=b. Putting this in (i),

    we get a=34,b=94

     

     

     

    Chat on WhatsApp Call Infinity Learn

      Talk to our academic expert!



      +91



      Live ClassesRecorded ClassesTest SeriesSelf Learning

      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.