Let f(x)=(x−4)(x−5)(x−6)(x−7) then

Let f(x)=(x4)(x5)(x6)(x7) then

  1. A

    f(x)=0 has four roots

  2. B

    three roots of f(x)=0 lie in (4,5)(5,6)(6,7)

  3. C

    the equation f(x)=0 has only one root

  4. D

    three roots of f(x)=0 lie in (3,4)(4,5)(5,6)

    Register to Get Free Mock Test and Study Material

    +91

    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    We have,

    f(x)=(x4)(x5)(x6)(x7).

    Clearly, f(4)=f(5)=f(6)=f(7)=0

    By Rolle's theorem, there exist α1(4,5),α2(5,6),

    α2(6.7) such that f(αi)=0,i=1,2,3.

    Since f' (x)  is a cubic polynomial. Therefore, α1,α2,α3 are the only roots of f(x)=0.

    Chat on WhatsApp Call Infinity Learn

      Register to Get Free Mock Test and Study Material

      +91

      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.