Suppose  P(x)=1−x+x2−x3+…+x2012 is expressed  as a polynomial in y, as Q(y)=a0+a1y+…+a2012y2012 where y=x−2, then ∑i=02012 ai equal 

Suppose  P(x)=1x+x2x3++x2012 is expressed  as a polynomial in 

y, as Q(y)=a0+a1y++a2012y2012 where y=x2, then i=02012ai equal 

  1. A

    1432013+1

  2. B

    13320131

  3. C

    0

  4. D

    1

    Register to Get Free Mock Test and Study Material



    +91



    Live ClassesRecorded ClassesTest SeriesSelf Learning

    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    We have 

    P(x)=1(x)20131(x)=1+x20131+x

    i=02012ai=Q(1)=P(3)         [y=1=x2]

    =1432013+1

    Chat on WhatsApp Call Infinity Learn

      Talk to our academic expert!



      +91



      Live ClassesRecorded ClassesTest SeriesSelf Learning

      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.