MathematicsSuppose f(x+y)=f(x)⋅f(y), f(x)=1+xg(x) where  x→0 Ltg(x)=1 then the value of log f(8) is ___

Suppose f(x+y)=f(x)f(y), f(x)=1+xg(x) where  x0 Ltg(x)=1 then the value of log f(8) is ___

    Register to Get Free Mock Test and Study Material



    +91



    Live ClassesRecorded ClassesTest SeriesSelf Learning

    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    f(x+y)=f(x)f(y)f(0)=f(0)f(0)f(0)=0 or f(0)=1

    And f(x+0)=f(x)f(0)

    If f(0)=0, then f(x)=f(x+0)=f(x)0=0

    f(x)=0x

    Ltx0f(x)=1+Ltx0xg(x)=1+0=1 contradicts f(x)=0

    f(0)=1

    limh0f(x+h)f(x)h=limh0f(x)f(h)f(x)h=limh0f(x)f(h)1hf'x=f(x)limh0f(h)1h=fxlimh01+hg(h)-1h=fxlimh0hg(h)h=fxlimh0g(h)=f(x) 

    f1(x)=f(x)f(x)=c.exf(0)=c=1 f(x)=ex Log f(x)=x Log f(8)=8

    Chat on WhatsApp Call Infinity Learn

      Talk to our academic expert!



      +91



      Live ClassesRecorded ClassesTest SeriesSelf Learning

      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.