The value of ∫1+sin⁡x1−sin⁡xdx is

The value of 1+sinx1sinxdx is

  1. A

    2tanx2+π4+C

  2. B

    2tanx2+π4+x+C

  3. C

    2tanx2+π4x+C

  4. D

    2tan2x2+π4x+C

    Register to Get Free Mock Test and Study Material



    +91



    Live ClassesRecorded ClassesTest SeriesSelf Learning

    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    1+sinx1sinxdx=(1+sinx)21sin2xdx=(secx+tanx)2dx=sec2x+sec2x1dx+2secxtanxdx=2tanxx+2secx+C=21+sinxcosxx+C=21cosx+π2sinx+π2x+C=22sin2x2+π42sinx2+π4cosx2+π4x+C=2tanx2+π4x+C

    Chat on WhatsApp Call Infinity Learn

      Talk to our academic expert!



      +91



      Live ClassesRecorded ClassesTest SeriesSelf Learning

      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.