Search for: The value of 2∫sinxdxsinx−π4 is equal toThe value of 2∫sinxdxsinx−π4 is equal toAx−logcosx−π4+CBx+logcosx−π4+CCx−logsinx−π4+CDx+logsinx−π4+C Register to Get Free Mock Test and Study Material +91 Verify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution:Let I=2∫sinxsinx−π4dxPut, x=π4=t⇒dx=dt∴I=2∫sinπ4+tdtsint=2∫12cott+12dt=log|sint|+t+C=x+logsinx−π4+CPost navigationPrevious: ∫dxex+e−x+2 is equal toNext: ∫ex(1+x)cos2exxdx is equal toRelated content JEE Main 2023 Result: Session 1 NEET 2024 JEE Advanced 2023 NEET Rank Assurance Program | NEET Crash Course 2023 JEE Main 2023 Question Papers with Solutions JEE Main 2024 Syllabus Best Books for JEE Main 2024 JEE Advanced 2024: Exam date, Syllabus, Eligibility Criteria JEE Main 2024: Exam dates, Syllabus, Eligibility Criteria JEE 2024: Exam Date, Syllabus, Eligibility Criteria