Search for: Mathematicsu=x2+y2 and x=s+3t,y=2s−t, then d2uds2 isu=x2+y2 and x=s+3t,y=2s−t, then d2uds2 isA12B32C36D10 Fill Out the Form for Expert Academic Guidance!l Grade ---Class 6Class 7Class 8Class 9Class 10Class 11Class 12 Target Exam JEENEETCBSE +91 Preferred time slot for the call ---9 am10 am11 am12 pm1 pm2 pm3 pm4 pm5 pm6 pm7 pm8pm9 pm10pmPlease indicate your interest Live ClassesBooksTest SeriesSelf LearningLanguage ---EnglishHindiMarathiTamilTeluguMalayalamAre you a Sri Chaitanya student? NoYesVerify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution:Given u=x2+y2,x=s+3t,y=2s−tdxds=1,dyds=2;d2xds2=0,d2yds2=0u=x2+y2⇒duds=2xdxds+2ydyds=d2uds2=2dxds2+2xd2xds2+2dyds2+2yd2yds2⇒d2uds2=2(1)2+2x(0)+2(2)2+2y(0)=2+8=10 Related content Area of Square Area of Isosceles Triangle Pythagoras Theorem Triangle Formulae Perimeter of Triangle Formula Area Formulae Volume of Cone Formula Matrices and Determinants_mathematics Critical Points Solved Examples Type of relations_mathematics