x3y−2×2+y4=8 then dydx at P(1,2) is

# ${x}^{3}y-2{x}^{2}+{y}^{4}=8$ then $\frac{dy}{dx}$ at $P\left(1,2\right)$ is

1. A

$\frac{2}{33}$

2. B

$\frac{-2}{33}$

3. C

$\frac{4}{15}$

4. D

$\frac{-4}{15}$

Register to Get Free Mock Test and Study Material

+91

Live ClassesRecorded ClassesTest SeriesSelf Learning

Verify OTP Code (required)

I agree to the terms and conditions and privacy policy.

### Solution:

$\begin{array}{l}{x}^{3}y-2{x}^{2}+{y}^{4}=8\\ ⇒{x}^{3}\frac{dy}{dx}+y\left(3{x}^{2}\right)-2\left(2x\right)+4{y}^{3}\frac{dy}{dx}=0\\ ⇒{x}^{3}\frac{dy}{dx}+4{y}^{3}\frac{dy}{dx}=4x-3{x}^{2}y\\ ⇒\left({x}^{3}+4{y}^{3}\right)\frac{dy}{dx}=4x-3{x}^{2}y\\ ⇒\frac{dy}{dx}=\frac{4x-3{x}^{2}y}{{x}^{3}+4{y}^{3}}\\ ⇒{\left(\frac{dy}{dx}\right)}_{P\left(1,2\right)}=\frac{4\left(1\right)-3{\left(1\right)}^{2}\left(2\right)}{{\left(1\right)}^{3}+4{\left(2\right)}^{3}}\\ =\frac{4-6}{1+32}\\ =\frac{-2}{33}\end{array}$

## Related content

 Distance Formula Perimeter of Rectangle Area of Square Area of Isosceles Triangle Pythagoras Theorem Triangle Formulae Volume of Cylinder Perimeter of Triangle Formula Area Formulae Volume Formulae

Talk to our academic expert!

+91

Live ClassesRecorded ClassesTest SeriesSelf Learning

Verify OTP Code (required)

I agree to the terms and conditions and privacy policy.