InfinityLearnInfinityLearn
courses
study material
results
more
call.svg
need help? talk to experts
talk to experts
7996668865
call.svg
sticky footer img
Not sure what to do in the future? Don’t worry! We have a FREE career guidance session just for you!
  • Download RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions PDF
    • Access answers to RD Sharma Solutions For Class 12 Chapter 4 – Inverse Trigonometric Functions
  • RD Sharma Class 12 Solutions Inverse Trigonometric Functions FAQs
rd sharma solutions /
RD Sharma Class 12 Solutions Inverse Trigonometric Functions PDF Download
Back to Blog

RD Sharma Class 12 Solutions Inverse Trigonometric Functions PDF Download

By Karan Singh Bisht

|

Updated on 30 Apr 2025, 12:25 IST

RD Sharma Solutions for Class 12 Maths Chapter 4 – Inverse Trigonometric Functions are presented in a clear and comprehensive format to help students score well in CBSE board exams. As Class 12 plays a pivotal role in shaping academic and career goals, these solutions are designed with student-friendly language to match diverse learning needs.

Our expert faculty has developed exercise-wise solutions following the RD Sharma textbook structure, ensuring each concept is explained step by step for easy understanding. Students can download the RD Sharma Class 12 Solutions PDF for Chapter 4 to clarify doubts, solve problems with confidence, and enhance their exam preparation.

Fill out the form for expert academic guidance
+91

These RD Sharma solutions align with the latest CBSE syllabus, updated exam pattern, and current marking scheme for 2025-26. Regular practice of this chapter enables students to solve complex problems efficiently and boosts conceptual clarity. Let us check at some of the important concepts that are discussed in this chapter.

  • Definition and meaning of inverse trigonometric functions
  • Inverse of sine, cosine, and tangent functions
  • Inverse of secant, cosecant, and cotangent functions
  • Properties of inverse trigonometric functions

With 14 well-structured exercises, this chapter builds a strong foundation in understanding inverse trigonometric concepts essential for competitive exams as well.

Unlock the full solution & master the concept
Get a detailed solution and exclusive access to our masterclass to ensure you never miss a concept

Download RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions PDF

RD Sharma Class 12 Maths Solutions Chapter 4 – Inverse Trigonometric Functions cover all the questions from the textbook, crafted by expert Mathematics teachers at Infinity Learn. Download our free PDF of Chapter 4 – Inverse Trigonometric Functions RD Sharma Solutions for Class 12 to boost your performance in board exams and competitive exams.

Access answers to RD Sharma Solutions For Class 12 Chapter 4 – Inverse Trigonometric Functions

Q. Find the domain of f(x) = cos-1 2x + sin-1 x.

Ready to Test Your Skills?
Check Your Performance Today with our Free Mock Tests used by Toppers!
Take Free Test

Solution:

Given that f(x) = cos-1 2x + sin-1 x.

🔥 Start Your JEE/NEET Prep at Just ₹1999 / month - Limited Offer! Check Now!

Now we have to find the domain of f(x),

We know that domain of cos-1 x lies in the interval [-1, 1]

cta3 image
create your own test
YOUR TOPIC, YOUR DIFFICULTY, YOUR PACE
start learning for free

Also know that domain of sin-1 x lies in the interval [-1, 1]

Therefore, the domain of cos-1 (2x) lies in the interval [-1, 1]

Hence we can write as,

-1 ≤ 2x ≤ 1

– ½ ≤ x ≤ ½

Hence, domain of cos-1(2x) + sin-1 x lies in the interval [- ½, ½]

Q. Find the domain of definition of f(x) = cos -1 (x2 – 4)

Solution: Given f(x) = cos -1 (x2 – 4)

We know that domain of cos-1 (x2 – 4) lies in the interval [-1, 1]

Therefore, we can write as

-1 ≤ x2 – 4 ≤ 1

4 – 1 ≤ x2 ≤ 1 + 4

3 ≤ x2 ≤ 5

±√ 3 ≤ x ≤ ±√5

– √5 ≤ x ≤ – √3 and √3 ≤ x ≤ √5

Therefore domain of cos-1 (x2 – 4) is [- √5, – √3] ∪ [√3, √5]

Q. Find the principal value of each of the following:

(i) tan-1 (1/√3)

(ii) tan-1 (-1/√3)

(iii) tan-1 (cos (π/2))

(iv) tan-1 (2 cos (2π/3))

Solution:

(i) Given tan-1 (1/√3)

We know that for any x ∈ R, tan-1 represents an angle in (-π/2, π/2) whose tangent is x.

So, tan-1 (1/√3) = an angle in (-π/2, π/2) whose tangent is (1/√3)

But we know that the value is equal to π/6

Therefore tan-1 (1/√3) = π/6

Hence the principal value of tan-1 (1/√3) = π/6

(ii) Given tan-1 (-1/√3)

We know that for any x ∈ R, tan-1 represents an angle in (-π/2, π/2) whose tangent is x.

So, tan-1 (-1/√3) = an angle in (-π/2, π/2) whose tangent is (1/√3)

But we know that the value is equal to -π/6

Therefore tan-1 (-1/√3) = -π/6

Hence the principal value of tan-1 (-1/√3) = – π/6

(iii) Given that tan-1 (cos (π/2))

But we know that cos (π/2) = 0

We know that for any x ∈ R, tan-1 represents an angle in (-π/2, π/2) whose tangent is x.

Therefore tan-1 (0) = 0

Hence the principal value of tan-1 (cos (π/2) is 0.

(iv) Given that tan-1 (2 cos (2π/3))

But we know that cos π/3 = 1/2

So, cos (2π/3) = -1/2

Therefore tan-1 (2 cos (2π/3)) = tan-1 (2 × – ½)

= tan-1(-1)

= – π/4

Hence, the principal value of tan-1 (2 cos (2π/3)) is – π/4

Q. Find the principal values of each of the following:

(i) cosec-1 (-√2)

(ii) cosec-1 (-2)

(iii) cosec-1 (2/√3)

(iv) cosec-1 (2 cos (2π/3))

Solution:

(i) Given cosec-1 (-√2)

Let y = cosec-1 (-√2)

Cosec y = -√2

– Cosec y = √2

– Cosec (π/4) = √2

– Cosec (π/4) = cosec (-π/4) [since –cosec θ = cosec (-θ)]

The range of principal value of cosec-1 [-π/2, π/2] – {0} and cosec (-π/4) = – √2

Cosec (-π/4) = – √2

Therefore the principal value of cosec-1 (-√2) is – π/4

(ii) Given cosec-1 (-2)

Let y = cosec-1 (-2)

Cosec y = -2

– Cosec y = 2

– Cosec (π/6) = 2

– Cosec (π/6) = cosec (-π/6) [since –cosec θ = cosec (-θ)]

The range of principal value of cosec-1 [-π/2, π/2] – {0} and cosec (-π/6) = – 2

Cosec (-π/6) = – 2

Therefore the principal value of cosec-1 (-2) is – π/6

(iii) Given cosec-1 (2/√3)

Let y = cosec-1 (2/√3)

Cosec y = (2/√3)

Cosec (π/3) = (2/√3)

Therefore range of principal value of cosec-1 is [-π/2, π/2] – {0} and cosec (π/3) = (2/√3)

Thus, the principal value of cosec-1 (2/√3) is π/3

(iv) Given cosec-1 (2 cos (2π/3))

But we know that cos (2π/3) = – ½

Therefore 2 cos (2π/3) = 2 × – ½

2 cos (2π/3) = -1

By substituting these values in cosec-1 (2 cos (2π/3)) we get,

Cosec-1 (-1)

Let y = cosec-1 (-1)

– Cosec y = 1

– Cosec (π/2) = cosec (-π/2) [since –cosec θ = cosec (-θ)]

The range of principal value of cosec-1 [-π/2, π/2] – {0} and cosec (-π/2) = – 1

Cosec (-π/2) = – 1

Therefore the principal value of cosec-1 (2 cos (2π/3)) is – π/2

Q. Evaluate each of the following:

(i) sin-1(sin π/6)

(ii) sin-1(sin 7π/6)

(iii) sin-1(sin 5π/6)

(iv) sin-1(sin 13π/7)

(v) sin-1(sin 17π/8)

Solution:

(i) Given sin-1(sin π/6)

We know that the value of sin π/6 is ½

By substituting this value in sin-1(sin π/6)

We get, sin-1 (1/2)

Now let y = sin-1 (1/2)

Sin (π/6) = ½

The range of principal value of sin-1(-π/2, π/2) and sin (π/6) = ½

Therefore sin-1(sin π/6) = π/6

(ii) Given sin-1(sin 7π/6)

But we know that sin 7π/6 = – ½

By substituting this in sin-1(sin 7π/6) we get,

Sin-1 (-1/2)

Now let y = sin-1 (-1/2)

– Sin y = ½

– Sin (π/6) = ½

– Sin (π/6) = sin (- π/6)

The range of principal value of sin-1(-π/2, π/2) and sin (- π/6) = – ½

Therefore sin-1(sin 7π/6) = – π/6

(iii) Given sin-1(sin 5π/6)

We know that the value of sin 5π/6 is ½

By substituting this value in sin-1(sin 5π/6)

We get, sin-1 (1/2)

Now let y = sin-1 (1/2)

Sin (π/6) = ½

The range of principal value of sin-1(-π/2, π/2) and sin (π/6) = ½

Therefore sin-1(sin 5π/6) = π/6

(iv) Given sin-1(sin 13π/7)

Given question can be written as sin (2π – π/7)

Sin (2π – π/7) can be written as sin (-π/7) [since sin (2π – θ) = sin (-θ)]

By substituting these values in sin-1(sin 13π/7) we get sin-1(sin – π/7)

As sin-1(sin x) = x with x ∈ [-π/2, π/2]

Therefore sin-1(sin 13π/7) = – π/7

(v) Given sin-1(sin 17π/8)

Given question can be written as sin (2π + π/8)

Sin (2π + π/8) can be written as sin (π/8)

By substituting these values in sin-1(sin 17π/8) we get sin-1(sin π/8)

As sin-1(sin x) = x with x ∈ [-π/2, π/2]

Therefore sin-1(sin 17π/8) = π/8

Q. Evaluate each of the following:

(i) cos-1{cos (-π/4)}

(ii) cos-1(cos 5π/4)

(iii) cos-1(cos 4π/3)

(iv) cos-1(cos 13π/6)

Solution:

(i) Given cos-1{cos (-π/4)}

We know that cos (-π/4) = cos (π/4) [since cos (-θ) = cos θ

Also know that cos (π/4) = 1/√2

By substituting these values in cos-1{cos (-π/4)} we get,

Cos-1(1/√2)

Now let y = cos-1(1/√2)

Therefore cos y = 1/√2

Hence range of principal value of cos-1 is [0, π] and cos (π/4) = 1/√2

Therefore cos-1{cos (-π/4)} = π/4

(ii) Given cos-1(cos 5π/4)

But we know that cos (5π/4) = -1/√2

By substituting these values in cos-1{cos (5π/4)} we get,

Cos-1(-1/√2)

Now let y = cos-1(-1/√2)

Therefore cos y = – 1/√2

– Cos (π/4) = 1/√2

Cos (π – π/4) = – 1/√2

Cos (3 π/4) = – 1/√2

Hence range of principal value of cos-1 is [0, π] and cos (3π/4) = -1/√2

Therefore cos-1{cos (5π/4)} = 3π/4

(iii) Given cos-1(cos 4π/3)

But we know that cos (4π/3) = -1/2

By substituting these values in cos-1{cos (4π/3)} we get,

Cos-1(-1/2)

Now let y = cos-1(-1/2)

Therefore cos y = – 1/2

– Cos (π/3) = 1/2

Cos (π – π/3) = – 1/2

Cos (2π/3) = – 1/2

Hence range of principal value of cos-1 is [0, π] and cos (2π/3) = -1/2

Therefore cos-1{cos (4π/3)} = 2π/3

(iv) Given cos-1(cos 13π/6)

But we know that cos (13π/6) = √3/2

By substituting these values in cos-1{cos (13π/6)} we get,

Cos-1(√3/2)

Now let y = cos-1(√3/2)

Therefore cos y = √3/2

Cos (π/6) = √3/2

Hence range of principal value of cos-1 is [0, π] and cos (π/6) = √3/2

Therefore cos-1{cos (13π/6)} = π/6

RD Sharma Class 12 Solutions Inverse Trigonometric Functions FAQs

How to Download RD Sharma Class 12 Solutions Inverse Trigonometric Functions from Infinity Learn?

To download the RD Sharma Class 12 Maths Chapter 4 Solutions on Inverse Trigonometric Functions from Infinity Learn, visit the official website infinitylearn.com, go to the “Rd sharma solutions” section, select “RD Sharma Class 12 Maths,” and click on Chapter 4. The solutions are available for free PDF download without any login.

Why Should Students Refer to RD Sharma Class 12 Solutions Inverse Trigonometric Functions?

Students should refer to RD Sharma Solutions for Chapter 4 because they offer stepwise, CBSE-aligned explanations that help strengthen conceptual understanding. These solutions are ideal for board exam preparation and are created by expert faculty to simplify complex inverse trigonometric problems.

What Are the Best Tips to Study RD Sharma Class 12 Solutions Inverse Trigonometric Functions?

To get the most out of RD Sharma Class 12 Chapter 4 solutions:

  1. First, understand the basic theory from the textbook.
  2. Attempt the exercises independently before checking solutions.
  3. Use the stepwise answers to learn problem-solving techniques.
  4. Revise formulas and identities regularly.
  5. Practice consistently to build confidence before exams.

What Are the Features of RD Sharma Class 12 Solutions Inverse Trigonometric Functions?

These solutions feature:

  1. Chapter-wise and exercise-wise breakdown.
  2. Clear explanations aligned with the CBSE 2025–26 syllabus.
  3. Step-by-step solutions for all textbook problems.
  4. Expert-written content ideal for revision and practice.
  5. Free and downloadable PDF format.

What Are the Benefits of Using RD Sharma Class 12 Inverse Trigonometric Solutions?

Using RD Sharma Class 12 Solutions for Chapter 4 offers several benefits:

  • Improves exam performance with precise and structured answers.
  • Boosts understanding of inverse trigonometric concepts.
  • Supports self-learning and instant doubt resolution.
  • Saves preparation time with clear explanations.
  • Helps in scoring well in competitive and board exams.

How Are RD Sharma Class 12 Solutions by Infinity Learn Better Than Others?

Infinity Learn RD Sharma Class 12 Maths solutions stand out because they are:

  • Updated for the 2025–26 academic year.
  • Crafted by subject matter experts with teaching experience.
  • Easy to navigate and access through mobile or desktop.
  • More student-friendly with intuitive formatting and simplified language.
  • Aligned with CBSE marking schemes for exam readiness.
footerlogos
call

1800-419-4247 (customer support)

call

7996668865 (sales team)

mail

support@infinitylearn.com

map

Head Office:
Infinity Towers, N Convention Rd,
Surya Enclave, Siddhi Vinayak Nagar,
Kothaguda, Hyderabad,
Telangana 500084.

map

Corporate Office:
9th Floor, Shilpitha Tech Park,
3 & 55/4, Devarabisanahalli, Bellandur,
Bengaluru, Karnataka 560103

facebooktwitteryoutubelinkedininstagram
company
  • about us
  • our team
  • Life at Infinity Learn
  • IL in the news
  • blogs
  • become a Teacher
courses
  • Class 6 Foundation
  • Class 7 Foundation
  • Class 8 Foundation
  • Class 9 JEE Foundation
  • Class 10 JEE Foundation
  • Class 9 NEET Foundation
  • Class 10 NEET Foundation
  • JEE Course
  • NEET Course
support
  • privacy policy
  • refund policy
  • grievances
  • terms and conditions
  • Supplier Terms
  • Supplier Code of Conduct
  • Posh
more
  • IL for schools
  • Sri Chaitanya Academy
  • Score scholarships
  • YT Infinity Learn JEE
  • YT - Infinity Learn NEET
  • YT Infinity Learn 9&10
  • Telegram Infinity Learn NEET
  • Telegram Infinity Learn JEE
  • Telegram Infinity Learn 9&10

Free study material

JEE
  • JEE Revision Notes
  • JEE Study Guide
  • JEE Previous Year's Papers
NEET
  • NEET previous year's papers
  • NEET study guide
CBSE
  • CBSE study guide
  • CBSE revision questions
POPULAR BOOKS
  • RD Sharma
NCERT SOLUTIONS
  • Class 12 NCERT Solutions
  • Class 11 NCERT Solutions
  • Class 10 NCERT Solutions
  • Class 9 NCERT Solutions
  • Class 8 NCERT Solutions
  • Class 7 NCERT Solutions
  • Class 6 NCERT Solutions
NCERT EXEMPLAR
  • Class 12 NCERT exemplar
  • Class 11 NCERT exemplar
  • Class 10 NCERT exemplar
  • Class 9 NCERT exemplar
  • Class 8 NCERT exemplar
  • Class 7 NCERT exemplar
  • Class 6 NCERT exemplar
SUBJECT
  • Maths
  • Science
  • Physics
  • Chemistry
  • Biology
ENGINEERING ENTRANCE EXAM
  • BITSAT Exam
  • VITEE Exam
  • SRMJEE Exam
  • KIIT Exam
  • Manipal CET
  • COMEDK Exam
  • TS-EAMCET
  • AP-EAMCET
  • MH-CET Exam
  • Amrita University Exam
  • CUET Exam
RANK PREDICTOR
  • JEE Main Rank College Predictor
  • NEET Rank Predictor
STATE BOARDS
  • Telangana Board
  • Andhra Pradesh Board
  • Kerala Board
  • Karnataka Board
  • Maharashtra Board
  • Madhya Pradesh Board
  • Uttar Pradesh Board
  • Bihar Board
  • West Bengal Board
  • JEE Revision Notes
  • JEE Study Guide
  • JEE Previous Year's Papers
  • NEET previous year's papers
  • NEET study guide
  • CBSE study guide
  • CBSE revision questions
  • RD Sharma
  • Class 12 NCERT Solutions
  • Class 11 NCERT Solutions
  • Class 10 NCERT Solutions
  • Class 9 NCERT Solutions
  • Class 8 NCERT Solutions
  • Class 7 NCERT Solutions
  • Class 6 NCERT Solutions
  • Class 12 NCERT exemplar
  • Class 11 NCERT exemplar
  • Class 10 NCERT exemplar
  • Class 9 NCERT exemplar
  • Class 8 NCERT exemplar
  • Class 7 NCERT exemplar
  • Class 6 NCERT exemplar
  • Maths
  • Science
  • Physics
  • Chemistry
  • Biology
  • BITSAT Exam
  • VITEE Exam
  • SRMJEE Exam
  • KIIT Exam
  • Manipal CET
  • COMEDK Exam
  • TS-EAMCET
  • AP-EAMCET
  • MH-CET Exam
  • Amrita University Exam
  • CUET Exam
  • JEE Main Rank College Predictor
  • NEET Rank Predictor
  • Telangana Board
  • Andhra Pradesh Board
  • Kerala Board
  • Karnataka Board
  • Maharashtra Board
  • Madhya Pradesh Board
  • Uttar Pradesh Board
  • Bihar Board
  • West Bengal Board

© Rankguru Technology Solutions Private Limited. All Rights Reserved

follow us
facebooktwitteryoutubelinkedininstagram
Related Blogs
RD Sharma Class 11 - Chapter 7: Trigonometric Ratios of Compound AnglesRD Sharma Class 11 Solutions for Chapter 6: Graphs of Trigonometric FunctionsRD Sharma Solutions for Class 12 Maths Chapter 24 – Scalar or Dot ProductRD Sharma Solutions Class 9 Maths Chapter 23 -Graphical Representation of Statistical DataRD Sharma Solutions Class 9 Maths Chapter 22 - Tabular Representation of Statistical DataRD Sharma Solutions Class 9 Maths Chapter 21 - Surface Area and Volume of a SphereRD Sharma Solutions for Class 12 Maths Chapter 23 – Algebra of VectorsRD Sharma Class 11 Solutions for Chapter 5: Trigonometric FunctionsRD Sharma Solutions for Class 12 Maths Chapter 18 Maxima and Minima – PDF DownloadRD Sharma Class 11 Solutions for Chapter 4: Measurement of Angles