IIT JEEJEE MainsJEE Main Syllabus 2025 : Check Detailed Physics, Chemistry and Mathematics Syllabus

JEE Main Syllabus 2025 : Check Detailed Physics, Chemistry and Mathematics Syllabus

JEE Main 2025 Syllabus: The JEE Main syllabus, as prescribed by the NTA, is available here. Last year, the NTA removed certain topics from the syllabus in Physics, Chemistry, and Mathematics.

    Fill Out the Form for Expert Academic Guidance!



    +91

    Verify OTP Code (required)


    I agree to the terms and conditions and privacy policy.

    The updated syllabus for JEE Mains 2025 will soon be released by the NTA on the official website, jeemain.nta.ac.in, along with the information brochure containing all exam details. The JEE Mains syllabus 2025 is categorized into three sections: Physics, Chemistry, and Mathematics.

    JEE Main 2025 Syllabus

    The syllabus is important of your JEE Main 2025 preparation journey. It not only outlines the essential topics to study but also helps you identify and eliminate irrelevant topics, allowing you to focus your efforts more effectively. By adhering to the syllabus, you can streamline your preparation and ensure you’re on the right track. Candidates who meet the JEE Main 2025 cutoff will qualify for JEE Advanced 2025, opening the door to IIT admissions.

    Below, you’ll find the current JEE Main syllabus, which includes key topics and their mark-wise weightage. Be sure to check out the detailed and updated topic-wise syllabus for JEE Main 2025, including any topics that have been removed.

    JEE Main Exam Dates 2025

    Candidates can check the JEE Main 2025 Exam Dates from the given table below-

    Events Dates (tentative)
    JEE Main Registration begin November 2024
    JEE Main Last date to apply December 2024
    JEE Main Admit Card release date 3 days before the exam
    JEE Main 2025 Exam Date January 2025 and April 2025
    JEE Main 2025 result declaration date One week after the exam

    JEE Main Syllabus 2025 Pdf

    The JEE Main 2025 exam will be held for three courses: Paper 1 for BE/BTech, Paper 2A for BArch, and Paper 2B for BPlan. The syllabus for Paper 1 includes Physics, Chemistry, and Mathematics topics from Class 11th and 12th. Paper 2A (BArch) covers Mathematics, General Aptitude, and Drawing, while Paper 2B (BPlan) includes Mathematics, General Aptitude, and Planning topics.

    JEE Main Physics Syllabus 2025

    Candidates can check the important topics included in JEE Main Physics Syllabus 2025 here-

    Units Topics Sub Topics
    Unit 1 Physics and Measurement Physics, technology, and society, S I Units, fundamental and derived units, least count, accuracy and precision of measuring instruments, Errors in measurement, Dimensions of Physics quantities, dimensional analysis, and its applications.
    Unit 2 Kinematics The frame of reference, motion in a straight line, Position- time graph, speed and velocity; Uniform and non-uniform motion, average speed and instantaneous velocity, uniformly accelerated motion, velocity-time, position-time graph, relations for uniformly accelerated motion, Scalars and Vectors, Vector. Addition and subtraction, zero vector, scalar and vector products, Unit Vector, Resolution of a Vector. Relative Velocity, Motion in a plane, Projectile Motion, Uniform Circular Motion.
    Unit 3 Laws of Motion Force and inertia, Newton’s First law of motion; Momentum, Newton’s Second Law of motion, Impulses; Newton’s Third Law of motion. Law of conservation of linear momentum and its applications. Equilibrium of concurrent forces. Static and Kinetic friction, laws of friction, rolling friction. Dynamics of uniform circular motion: centripetal force and its applications.
    Unit 4 Work, Energy and Power Work done by a content force and a variable force; kinetic and potential energies, work-energy theorem, power.

    The potential energy of spring conservation of mechanical energy, conservative and neoconservative forces; Elastic and inelastic collisions in one and two dimensions.

    Unit 5 Rotational Motion Centre of the mass of a two-particle system, Centre of the mass of a rigid body; Basic concepts of rotational motion; a moment of a force; torque, angular momentum, conservation of angular momentum and its applications; the moment of inertia, the radius of gyration. Values of moments of inertia for simple geometrical objects, parallel and perpendicular axes theorems, and their applications. Rigid body rotation equations of rotational motion.
    Unit 6 Gravitation The universal law of gravitation. Acceleration due to gravity and its variation with altitude and depth. Kepler’s law of planetary motion. Gravitational potential energy; gravitational potential. Escape velocity, Orbital velocity of a satellite. Geo stationary satellites.
    Unit 7 Properties of Solids and Liquids Elastic behaviour, Stress-strain relationship, Hooke’s Law. Young’s modulus, bulk modulus, modulus of rigidity. Pressure due to a fluid column; Pascal’s law and its applications. Viscosity. Stokes’ law. terminal velocity, streamline, and turbulent flow. Reynolds number. Bernoulli’s principle and its applications. Surface energy and surface tension, angle of contact, application of surface tension – drops, bubbles, and capillary rise. Heat, temperature, thermal expansion; specific heat capacity, calorimetry; change of state, latent heat. Heat transfer-conduction, convection, and radiation. Newton’s law of cooling.
    Unit 8 Thermodynamics Thermal equilibrium, zeroth law of thermodynamics, the concept of temperature. Heat, work, and internal energy. The first law of thermodynamics. The second law of thermodynamics: reversible and irreversible processes. Carnot engine and its efficiency.
    Unit 9 Kinetic Theory of Gases Equation of state of a perfect gas, work done on compressing a gas, Kinetic theory of gases – assumptions, the concept of pressure. Kinetic energy and temperature: RMS speed of gas molecules: Degrees of freedom. Law of equipartition of energy, applications to specific heat capacities of gases; Mean free path. Avogadro’s number.
    Unit 10 Oscillation and Waves Periodic motion – period, frequency, displacement as a function of time. Periodic functions. Simple harmonic motion (S.H.M.) and its equation; phase: oscillations of a spring -restoring force and force constant: energy in S.H.M. – Kinetic and potential energies; Simple pendulum – derivation of expression for its time period: Free, forced and damped oscillations, resonance. Wave motion. Longitudinal and transverse waves, speed of a wave. Displacement relation for a progressive wave. Principle of superposition of waves, a reflection of waves. Standing waves in strings and organ pipes, fundamental mode and harmonics. Beats. Doppler Effect in sound
    Unit 11 Electrostatics Electric charges: Conservation of charge. Coulomb’s law forces between two point charges, forces between multiple charges: superposition principle and continuous charge distribution. Electric field: Electric field due to a point charge, Electric field lines. Electric dipole, Electric field due to a dipole. Torque on a dipole in a uniform electric field.

    Electric flux: Gauss’s law and its applications to find field due to infinitely long uniformly charged straight wire, uniformly charged infinite plane sheet, and uniformly charged thin spherical shell. Electric potential and its calculation for a point charge, electric dipole and system of charges; Equipotential surfaces, Electrical potential energy of a system of two point charges in an electrostatic field.

    Conductors and insulators: Dielectrics and electric polarization, capacitor, the combination of capacitors in series and parallel, capacitance of a parallel plate capacitor with and without dielectric medium between the plates. Energy stored in a capacitor.

    Unit 12 Current Electricity Electric current. Drift velocity. Ohm’s law. Electrical resistance. Resistances of different materials. V-l characteristics of Ohmic and non-ohmic conductors. Electrical energy and power. Electrical resistivity. Colour code for resistors; Series and parallel combinations of resistors; Temperature dependence of resistance. Electric Cell and its Internal resistance, potential difference and emf of a cell, a combination of cells in series and parallel. Kirchhoff’s laws and their applications. Wheatstone bridge. Metre Bridge. Potentiometer – principle and its applications.
    Unit 13 Magnetic Effect of Current and Magnetism Biot – Savart law and its application to current carrying circular loop. Ampere’s law and its applications to infinitely long current carrying straight wire and solenoid. Force on a moving charge in uniform magnetic and electric fields. Cyclotron.

    Force on a current-carrying conductor in a uniform magnetic field. The force between two parallel currents carrying conductors-definition of ampere. Torque experienced by a current loop in a uniform magnetic field: Moving coil galvanometer, its current sensitivity, and conversion to ammeter and voltmeter.

    Current loop as a magnetic dipole and its magnetic dipole moment. Bar magnet as an equivalent solenoid, magnetic field lines; Earth’s magnetic field and magnetic elements. Para-, dia- and ferromagnetic substances. Magnetic susceptibility and permeability. Hysteresis. Electromagnets and permanent magnets.

    Unit 14 Electromagnetic Induction and Alternating Current Electromagnetic induction: Faraday’s law. Induced emf and current: Lenz’s Law, Eddy currents. Self and mutual inductance. Alternating currents, peak and RMS value of alternating current/ voltage: reactance and impedance: LCR series circuit, resonance: Quality factor, power in AC circuits, wattless current. AC generator and transformer.
    Unit 15 Electromagnetic Waves Electromagnetic waves and their characteristics, Transverse nature of electromagnetic waves, Electromagnetic spectrum (radio waves, microwaves, infrared, visible, ultraviolet. X-rays. Gamma rays), Applications of e.m. waves.
    Unit 16 Optics Reflection and refraction of light at plane and spherical surfaces, mirror formula. Total internal reflection and its applications. Deviation and Dispersion of light by a; prism; Lens Formula. Magnification. Power of a Lens. Combination of thin lenses in contact. Microscope and Astronomical Telescope (reflecting and refracting) and their magnifying powers.

    Wave optics

    wavefront and Huygens’ principle. Laws of reflection and refraction using Huygens principle. Interference, Young’s double-slit experiment and expression for fringe width, coherent sources, and sustained interference of light. Diffraction due to a single slit, width of central maximum. Resolving power of microscopes and astronomical telescopes. Polarization, plane-polarized light: Brewster’s law, uses of plane-polarized light and Polaroid.

    Unit 17 Dual Nature of Matter and Radiation Dual nature of radiation. Photoelectric effect. Hertz and Lenard’s observations; Einstein’s photoelectric equation: particle nature of light. Matter waves-wave nature of particle, de Broglie relation. Davisson-Germer experiment.
    Unit 18 Atoms and Nuclei Alpha-particle scattering experiment; Rutherford’s model of atom; Bohr model, energy levels, hydrogen spectrum. Composition and size of nucleus, atomic masses, isotopes, isobars: isotones. Radioactivity- alpha. beta and gamma particles/rays and their properties; radioactive decay law. Mass-energy relation, mass defect; binding energy per nucleon and its variation with mass number, nuclear fission, and fusion.
    Unit 19 Electronic Devices Semiconductors; semiconductor diode: 1-V characteristics in forward and reverse bias; diode as a rectifier; I-V characteristics of LED. the photodiode, solar cell, and Zener diode; Zener diode as a voltage regulator. Junction transistor, transistor action, characteristics of a transistor: transistor as an amplifier (common emitter configuration) and oscillator. Logic gates (OR. AND. NOT. NAND and NOR). Transistor as a switch.

    Click Here: Class 12 IIT JEE Online Course

    JEE Main 2025 Chapter-wise Weightage of Physics

    Candidates can check the chapters, total questions, and weightage from each chapter of the Physics paper given below.

    Chapters Total Questions Weightage
    Electrostatics 1 3.3%
    Capacitors 1 3.3%
    Simple Harmonic Motion 1 3.3%
    Sound Waves 1 3.3%
    Elasticity 1 3.3%
    Error in Measurement 1 3.3%
    Circular Motion 1 3.3%
    Electromagnetic Waves 1 3.3%
    Semiconductors 1 3.3%
    Magnetic Effect of Current and Magnetism 2 6.6%
    Alternating Current 2 6.6%
    Kinetic Theory of Gases & Thermodynamics 2 6.6%
    Kinematics 2 6.6%
    Work, Energy, and Power 2 6.6%
    Laws of Motion 2 6.6%
    Centre Of Mass 2 6.6%
    Rotational Dynamics 2 6.6%
    Modern Physics 2 6.6%
    Wave Optics 2 6.6%
    Current Electricity 3 9.9%

    JEE Main Syllabus 2025 Mathematics

    JEE Main Maths Syllabus is comprehensive, comprising 16 key topics or units. This syllabus is consistent across all three papers: B.E./B.Tech., B.Arch., and B.Planning. To view the detailed topics included in the JEE Main Maths Syllabus for 2025, please refer to the table provided below.

    Units Topics Sub Topics
    Unit 1 Sets, Relations and Functions Sets and their representation: Union, intersection and complement of sets and their algebraic properties; Power set; Relation, Type of relations, equivalence relations, functions; one-one, into and onto functions, the composition of functions
    Unit 2 Complex Numbers and Quadratic Equations Complex numbers as ordered pairs of reals, Representation of complex numbers in the form a + ib and their representation in a plane, Argand diagram, algebra of complex number, modulus and argument (or amplitude) of a complex number, square root of a complex number, triangle inequality, Quadratic equations in real and complex number system and their solutions Relations between roots and co-efficient, nature of roots, the formation of quadratic equations with given roots.
    Unit 3 Matrices and Determinants Matrices, algebra of matrices, type of matrices, determinants, and matrices of order two and three, properties of determinants, evaluation of determinants, area of triangles using determinants, Adjoint, and evaluation of inverse of a square matrix using determinants and elementary transformations, Test of consistency and solution of simultaneous linear equations in two or three variables using determinants and matrices
    Unit 4 Permutation and Combination The fundamental principle of counting, permutation as an arrangement and combination as section, Meaning of P (n,r) and C (n,r), simple applications
    Unit 5 Binomial Theorem and its Simple Applications Binomial theorem for a positive integral index, general term and middle term, properties of Binomial coefficients, and simple applications
    Unit 6 Sequence and Series Arithmetic and Geometric progressions, insertion of arithmetic, geometric means between two given numbers, Relation between A.M and G.M sum up to n terms of special series; Sn, Sn2, Sn3. Arithmetico-Geometric progression
    Unit 7 Limit, Continuity and Differentiability Real–valued functions, algebra of functions, polynomials, rational, trigonometric, logarithmic, and exponential functions, inverse function. Graphs of simple functions. Limits, continuity, and differentiability. Differentiation of the sum, difference, product, and quotient of two functions. Differentiation of trigonometric, inverse trigonometric, logarithmic, exponential, composite and implicit functions; derivatives of order up to two, Rolle’s and Lagrange’s Mean value Theorems, Applications of derivatives: Rate of change of quantities, monotonic Increasing and decreasing functions, Maxima and minima of functions of one variable, tangents and normal.
    Unit 8 Integral Calculus Integral as an anti-derivative, Fundamental Integrals involving algebraic, trigonometric, exponential, and logarithms functions. Integrations by substitution, by parts, and by partial functions. Integration using trigonometric identities. Integral as limit of a sum. The fundamental theorem of calculus, properties of definite integrals. Evaluation of definite integrals, determining areas of the regions bounded by simple curves in standard form.
    Unit 9 Differential Equations Ordinary differential equations, their order, and degree, the formation of differential equations, solution of differential equation by the method of separation of variables, solution of a homogeneous and linear differential equation
    Unit 10 Co-ordinate Geometry Cartesian system of rectangular coordinates in a plane, distance formula, sections formula, locus, and its equation, translation of axes, the slope of a line, parallel and perpendicular lines, intercepts of a line on the co-ordinate axis.

     

    Straight line

    Various forms of equations of a line, intersection of lines, angles between two lines, conditions for concurrence of three lines, the distance of a point form a line, equations of internal and external by sectors of angles between two lines co-ordinate of the centroid, orthocentre, and circumcentre of a triangle, equation of the family of lines passing through the point of intersection of two lines.

    Circle, conic sections

    A standard form of equations of a circle, the general form of the equation of a circle, its radius and central, equation of a circle when the endpoints of a diameter are given, points of intersection of a line and a circle with the centre at the origin and condition for a line to be tangent to a circle, equation of the tangent, sections of conics, equations of conic sections (parabola, ellipse, and hyperbola) in standard forms, condition for Y = mx +c to be a tangent and point (s) of tangency

    Unit 11 Three Dimensional Geometry Coordinates of a point in space, the distance between two points, section formula, directions ratios, and direction cosines, the angle between two intersecting lines. Skew lines, the shortest distance between them, and its equation. Equations of a line and a plane in different forms, the intersection of a line and a plane, and coplanar lines.
    Unit 12 Vector Algebra Vectors and scalars, the addition of vectors, components of a vector in two dimensions and three-dimensional space, scalar and vector products, scalar and vector triple product.
    Unit 13 Statistics and Probability Measures of discretion; calculation of mean, median, mode of grouped and ungrouped data calculation of standard deviation, variance and mean deviation for grouped and ungrouped data. Probability: Probability of an event, addition and multiplication theorems of probability, Baye’s theorem, probability distribution of a random variate, Bernoulli trials, and binomial distribution.
    Unit 14 Trigonometry Trigonometrical identities and equations, trigonometrical functions, inverse trigonometrical functions, and their properties, heights, and distance

    Click Here: IIT JEE Online Courses for Droppers

    JEE Main 2025 Chapter-wise Weightage of Mathematics

    Candidates can check the chapters, total questions, and weightage from each chapter of the Mathematics paper given below.

    Chapters Total Questions Weightage
    Sets 1 3.3%
    Permutations & Combinations 1 3.3%
    Probability 1 3.3%
    Complex Numbers 1 3.3%
    Binominal Theorem 1 3.3%
    Limits 1 3.3%
    Differentiability 1 3.3%
    Indefinite Integration 1 3.3%
    Definite Integration 1 3.3%
    Differential Equations 1 3.3%
    Height & Distance 1 3.3%
    Trigonometric Equations 1 3.3%
    The Area under the Curve 1 3.3%
    Quadratic Equations 1 3.3%
    Vectors 1 3.3%
    Tangents and Normals 1 3.3%
    Maxima and Minima 1 3.3%
    Statistics 1 3.3%
    Parabola 1 3.3%
    Ellipse 1 3.3%
    Hyperbola 1 3.3%
    Sequences & Series 2 6.6%
    Straight Lines 2 6.6%
    3-D Geometry 2 6.6%
    Determinants 2 6.6%

    JEE Main 2025 Chemistry Syllabus

    JEE Main 2025 syllabus for Chemistry is categorized into three sections: Section A covers Physical Chemistry, Section B focuses on Inorganic Chemistry, and Section C deals with Organic Chemistry. Below is the detailed topic-wise syllabus for Chemistry, drawn from the class 11 and 12 curriculum.

    Units Topics
    Unit 1: Some Basic Concepts in Chemistry Matter and its nature, Dalton’s atomic theory: Concept of atom, molecule, element, and compound: Physical quantities and their measurements in Chemistry, precision, and accuracy, significant figures. S.I.Units, dimensional analysis: Laws of chemical combination; Atomic and molecular masses, mole concept, molar mass, percentage composition, empirical and molecular formulae: Chemical equations and stoichiometry.
    Unit 2: Atomic Structure Thomson and Rutherford atomic models and their limitations; Nature of electromagnetic radiation, photoelectric effect; Spectrum of the hydrogen atom. Bohr model of a hydrogen atom – its postulates, derivation of the relations for the energy of the electron and radii of the different orbits, limitations of Bohr’s model; Dual nature of matter, de Broglie’s relationship. Heisenberg uncertainty principle. Elementary ideas of quantum mechanics, quantum mechanics, the quantum mechanical model of the atom, its important features. Concept of atomic orbitals as one-electron wave functions: Variation of Y and Y2 with r for 1s and 2s orbitals; various quantum numbers (principal, angular momentum, and magnetic quantum numbers) and their significance; shapes of s, p, and d – orbitals, electron spin and spin quantum number: Rules for filling electrons in orbitals – Aufbau principle. Pauli’s exclusion principle and Hund’s rule, electronic configuration of elements, extra stability of half-filled and completely filled orbitals.
    Unit 3: Chemical Bonding and Molecular Structure Kossel – Lewis approach to chemical bond formation, the concept of ionic and covalent bonds.

    Ionic Bonding: Formation of ionic bonds, factors affecting the formation of ionic bonds; calculation of lattice enthalpy. Covalent Bonding: Concept of electronegativity. Fajan’s rule, dipole moment: Valence Shell Electron Pair Repulsion (VSEPR ) theory and shapes of simple molecules. Quantum mechanical approach to covalent bonding: Valence bond theory – its important features, the concept of hybridization involving s, p, and d orbitals; Resonance. Molecular Orbital Theory – Its important features. LCAOs, types of molecular orbitals (bonding, antibonding), sigma and pi-bonds, molecular orbital electronic configurations of homonuclear diatomic molecules, the concept of bond order, bond length, and bond energy. Elementary idea of metallic bonding. Hydrogen bonding and its applications.

    Unit 4: Chemical Thermodynamics Fundamentals of thermodynamics: System and surroundings, extensive and intensive properties, state functions, types of processes. The first law of thermodynamics – Concept of work, heat internal energy and enthalpy, heat capacity, molar heat capacity; Hess’s law of constant heat summation; Enthalpies of bond dissociation, combustion, formation, atomization, sublimation, phase transition, hydration, ionization, and solution. The second law of thermodynamics – Spontaneity of processes; DS of the universe and DG of the system as criteria for spontaneity. DG° (Standard Gibbs energy change) and equilibrium constant.
    Unit 5: Solutions Different methods for expressing the concentration of solution – molality, molarity, mole fraction, percentage (by volume and mass both), the vapour pressure of solutions and Raoult’s Law – Ideal and non-ideal solutions, vapour pressure – composition, plots for ideal and nonideal solutions; Colligative properties of dilute solutions – a relative lowering of vapour pressure, depression of freezing point, the elevation of boiling point and osmotic pressure; Determination of molecular mass using colligative properties; Abnormal value of molar mass, van’t Hoff factor and its significance.
    Unit 6: Equilibrium Meaning of equilibrium, the concept of dynamic equilibrium. Equilibria involving physical processes: Solid-liquid, liquid – gas and solid-gas equilibria, Henry’s law. General characteristics of equilibrium involving physical processes. Equilibrium involving chemical processes: Law of chemical equilibrium, equilibrium constants (Kp and Kc) and their significance, the significance of DG and DG° in chemical equilibrium, factors affecting equilibrium concentration, pressure, temperature, the effect of catalyst; Le Chatelier’s principle. Ionic equilibrium: Weak and strong electrolytes, ionization of electrolytes, various concepts of acids and bases (Arrhenius. Bronsted – Lowry and Lewis) and their ionization, acid-base equilibria (including multistage ionization) and ionization constants, ionization of water. pH scale, common ion effect, hydrolysis of salts and pH of their solutions, the solubility of sparingly soluble salts and solubility products, buffer solutions.
    Unit 7: Redox Reactions and Electrochemistry Electronic concepts of oxidation and reduction, redox reactions, oxidation number, rules for assigning oxidation number, balancing of redox reactions. Electrolytic and metallic conduction, conductance in electrolytic solutions, molar conductivities and their variation with concentration: Kohlrausch’s law and its applications. Electrochemical cells – Electrolytic and Galvanic cells, different types of electrodes, electrode potentials including standard electrode potential, half – cell and cell reactions, emf of a Galvanic cell and its measurement: Nernst equation and its applications; Relationship between cell potential and Gibbs’ energy change: Dry cell and lead accumulator; Fuel cells.
    Unit 8: Chemical Kinetics Rate of a chemical reaction, factors affecting the rate of reactions: concentration, temperature, pressure, and catalyst; elementary and complex reactions, order and molecularity of reactions, rate law, rate constant and its units, differential and integral forms of zero and first-order reactions, their characteristics and half-lives, the effect of temperature on the rate of reactions, Arrhenius theory, activation energy and its calculation, collision theory of bimolecular gaseous reactions (no derivation).

    Inorganic Chemistry

    Units Topics
    Unit 9: Classification of Elements and Periodicity in Properties Modem periodic law and present form of the periodic table, s, p. d and f block elements, periodic trends in properties of elements atomic and ionic radii, ionization enthalpy, electron gain enthalpy, valence, oxidation states, and chemical reactivity.
    Unit 10: p-block elements Group -13 to Group 18 Elements

    General Introduction: Electronic configuration and general trends in physical and chemical properties of elements across the periods and down the groups; unique behaviour of the first element in each group. Groupwise study of the p – block elements

    Group -13

    Preparation, properties, and uses of boron and aluminum; Structure, properties, and uses of borax, boric acid, diborane, boron trifluoride, aluminum chloride, and alums.

    Group -14

    The tendency for catenation; Structure, properties, and uses of Allotropes and oxides of carbon, silicon tetrachloride, silicates, zeolites, and silicones.

    Group -15

    Properties and uses of nitrogen and phosphorus; Allotrophic forms of phosphorus; Preparation, properties, structure, and uses of ammonia, nitric acid, phosphine, and phosphorus halides, (PCl3. PCl5); Structures of oxides and oxoacids of nitrogen and phosphorus.

    Group -16

    Preparation, properties, structures, and uses of ozone: Allotropic forms of sulphur; Preparation, properties, structures, and uses of sulphuric acid (including its industrial preparation); Structures of oxoacids of sulphur.

    Group-17

    Preparation, properties, and uses of hydrochloric acid; Trends in the acidic nature of hydrogen halides; Structures of Interhalogen compounds and oxides and oxoacids of halogens. Group-18

    Unit 11: d- and f-block elements Transition Elements

    General introduction, electronic configuration, occurrence and characteristics, general trends in properties of the first-row transition elements – physical properties, ionization enthalpy, oxidation states, atomic radii, colour, catalytic behaviour, magnetic properties, complex formation, interstitial compounds, alloy formation; Preparation, properties, and uses of K2Cr2O7, and KMnO4.

    Inner Transition Elements

    Lanthanoids – Electronic configuration, oxidation states, and lanthanoid contraction.

    Actinoids – Electronic configuration and oxidation states.

    Unit 12: Coordination Compounds Introduction to coordination compounds. Werner’s theory; ligands, coordination number, denticity. chelation; IUPAC nomenclature of mononuclear co-ordination compounds, isomerism; Bonding-Valence bond approach and basic ideas of Crystal field theory, colour and magnetic properties; Importance of co-ordination compounds (in qualitative analysis, extraction of metals and in biological systems).

    Organic Chemistry

    Units Topics
    Unit 13: Purification and Characterization of Organic Compounds
    • Purification – Crystallization, sublimation, distillation, differential extraction, and chromatography – principles and their applications.
    • Qualitative analysis – Detection of nitrogen, sulphur, phosphorus, and halogens.
    • Quantitative analysis (basic principles only) – Estimation of carbon, hydrogen, nitrogen, halogens, sulphur, phosphorus. Calculations of empirical formulae and molecular formulae: Numerical problems in organic quantitative analysis
    Unit 14: Some Basic Principles of Organic Chemistry
    • Tetravalency of carbon: Shapes of simple molecules – hybridization (s and p): Classification of organic compounds based on functional groups: and those containing halogens, oxygen, nitrogen, and sulphur; Homologous series: Isomerism – structural and stereoisomerism.
    • Nomenclature (Trivial and IUPAC)- Covalent bond fission – Homolytic and heterolytic: free radicals, carbocations, and carbanions; stability of carbocations and free radicals, electrophiles, and nucleophiles.
    • Electronic displacement in a covalent bond – Inductive effect, electromeric effect, resonance, and hyperconjugation.
    • Common types of organic reactions- Substitution, addition, elimination, and rearrangement.
    Unit 15: Hydrocarbons Classification, isomerism, IUPAC nomenclature, general methods of preparation, properties, and reactions.

    • Alkanes – Conformations: Sawhorse and Newman projections (of ethane): Mechanism of halogenation of alkanes.
    • Alkenes – Geometrical isomerism: Mechanism of electrophilic addition: addition of hydrogen, halogens, water, hydrogen halides (Markownikoffs and peroxide effect): Ozonolysis and polymerization.
      Alkynes – Acidic character: Addition of hydrogen, halogens, water, and hydrogen halides: Polymerization.
    • Aromatic hydrocarbons – Nomenclature, benzene – structure and aromaticity: Mechanism of electrophilic substitution: halogenation, nitration.
    • Friedel – Craft’s alkylation and acylation, directive influence of the functional group in monosubstituted benzene.
    Unit 16: Organic Compounds containing Halogen General methods of preparation, properties, and reactions; Nature of C-X bond; Mechanisms of substitution reactions.

    Uses; Environmental effects of chloroform, iodoform freons, and DDT.

    Unit 17: Organic Compounds containing Oxygen General methods of preparation, properties, reactions, and uses.

    ALCOHOLS, PHENOLS, AND ETHERS

    • Alcohols: Identification of primary, secondary, and tertiary alcohols: mechanism of dehydration. Phenols: Acidic nature, electrophilic substitution reactions: halogenation. nitration and sulphonation. Reimer – Tiemann reaction.
    • Ethers: Structure.
    • Aldehyde and Ketones: Nature of carbonyl group; Nucleophilic addition to >C=O group, relative reactivities of aldehydes and ketones; Important reactions such as – Nucleophilic addition reactions (addition of HCN. NH3, and its derivatives), Grignard reagent; oxidation: reduction (Wolf Kishner and Clemmensen); the acidity of a-hydrogen. aldol condensation, Cannizzaro reaction. Haloform reaction, Chemical tests to distinguish between aldehydes and Ketones.
    • Carboxylic Acids: Acidic strength and factors affecting it
    Unit 18: Organic Compounds containing Nitrogen General methods of preparation. Properties, reactions, and uses.

    Amines: Nomenclature, classification structure, basic character, and identification of primary, secondary, and tertiary amines and their basic character.

    Diazonium Salts: Importance in synthetic organic chemistry.

    Unit 19: Biomolecules General introduction and importance of biomolecules. CARBOHYDRATES – Classification; aldoses and ketoses: monosaccharides (glucose and fructose) and constituent monosaccharides of oligosaccharides (sucrose, lactose, and maltose).PROTEINS – Elementary Idea of a-amino acids, peptide bond, polypeptides. Proteins: primary, secondary, tertiary, and quaternary structure (qualitative idea only), denaturation of proteins, enzymes. VITAMINS – Classification and functions. NUCLEIC ACIDS – Chemical constitution of DNA and RNA. Biological functions of nucleic acids
    Unit 20: Principles Related to Practical Chemistry Detection of extra elements (Nitrogen, Sulphur, halogens) in organic compounds; Detection of the following functional groups; hydroxyl (alcoholic and phenolic), carbonyl (aldehyde and ketones) carboxyl, and amino groups in organic compounds.

    · The chemistry involved in the preparation of the following:

    Inorganic compounds; Mohr’s salt, potash alum.

    Organic compounds: Acetanilide, p-nitro acetanilide, aniline yellow, iodoform.

    · The chemistry involved in the titrimetric exercises – Acids, bases and the use of indicators, oxalic-acid vs KMnO4, Mohr’s salt vs KMnO4

    · Chemical principles involved in the qualitative salt analysis

    Chemical principles involved in the following experiments:

    1. Enthalpy of solution of CuSO4
    2. Enthalpy of neutralization of strong acid and strong base.
    3. Preparation of lyophilic and lyophobic sols.
    4. Kinetic study of the reaction of iodide ions with hydrogen peroxide at room temperature.

    JEE Main 2025 Chapter-wise Weightage of Chemistry

    Candidates can check the chapters, total questions, and weightage from each chapter of the chemistry paper given below-

    Chapters Total Questions Weightage
    Mole Concept 1 3.3%
    Redox Reactions 1 3.3%
    Electrochemistry 1 3.3%
    Chemical Kinetics 1 3.3%
    Solution & Colligative Properties 1 3.3%
    General Organic Chemistry 1 3.3%
    Stereochemistry 1 3.3%
    Hydrocarbon 1 3.3%
    Alkyl Halides 1 3.3%
    Carboxylic Acids & their Derivatives 1 3.3%
    Carbohydrates, Amino-Acids, and Polymers 1 3.3%
    Aromatic Compounds 1 3.3%
    Atomic Structure 2 6.6%
    Chemical Bonding 2 6.6%
    Chemical And Ionic Equilibrium 2 6.6%
    Solid-State And Surface Chemistry 2 6.6%
    Nuclear & Environmental Chemistry 2 6.6%
    Thermodynamics & the Gaseous State 2 6.6%
    Transition Elements & Coordination Compounds 3 9.9%
    Periodic table, p-Block Elements 3 9.9%

    JEE Main Syllabus 2025 for B.Planning/B.Arch

    The second paper of JEE Main 2025 is designed for candidates aspiring to join B.Arch or B.Planning courses. The JEE Main 2025 syllabus for these courses is organized into three distinct sections.

    JEE Main Syllabus 2025 for B.Planning/B.Arch
    Part I Mathematics Awareness of persons, places, Buildings, and Materials. Objects, Texture related to Architecture and build—environment. Visualising three-dimensional objects from two-dimensional drawings. Visualising. different sides of three-dimensional objects. Analytical Reasoning Mental Ability (Visual, Numerical and Verbal).
    Part II Aptitude Three-dimensional – perception: Understanding and appreciation of scale and proportion of objects, building forms and elements, colour texture, harmony and contrast. Design and drawing of geometrical or abstract shapes and patterns in pencil.

    Transformation of forms both 2 D and 3 D union, subtraction, rotation, development of surfaces and volumes, Generation of Plan, elevations and 3 D views of objects. Creating two-dimensional and three-dimensional compositions using given shapes and forms.

    Sketching of scenes and activities from memory of urbanscape (public space, market, festivals, street scenes, monuments, recreational spaces, etc.), landscape (river fronts, jungles, trees, plants, etc.) and rural life.

    JEE Main Syllabus 2025 Planning

    JEE Main Syllabus 2025 Planning
    Topics Sub Topics
    Social Science Types of resources, agriculture, water, mineral resources, industries, national economy; Human Settlements

    Power-sharing, federalism, political parties, democracy, the Indian Constitution

    Economic development- economic sectors, globalization, the concept of development, poverty; Population structure, social exclusion, and inequality, urbanization, rural development, colonial cities, The idea of nationalism, nationalism in India, pre-modern world, 19th-century global economy, colonialism and colonial cities, industrialisation, resources and development

    General Awareness General Awareness questions and knowledge about prominent cities, development issues, government programs, etc.
    Thinking Skills critical reasoning; understanding of charts, graphs, and tables; basic concepts of statistics and quantitative reasoning, Comprehension (unseen passage); map reading skills, scale, distance, direction, area etc

    JEE Main 2025 Marking Scheme

    Candidates preparing for the Joint Entrance Examination (JEE) Mains 2025 will first need to familiarize themselves with the complete JEE Main 2024 syllabus to fully understand the marking scheme. The National Testing Agency (NTA) has confirmed that the marking scheme for JEE Main 2025 will remain unchanged from the previous session. Applicants can review the detailed marking scheme for both Paper 1 (B.E./B.Tech) and Paper 2 (B.Arch/B.Plan) below.

    JEE Main 2025 Marking Scheme For Paper-1 And Paper 2

    • Each correct answer awards four marks, while one mark is deducted for every incorrect answer.
    • For the Drawing section, a total of 100 marks are allocated to two questions.

    FAQs on JEE Main Syllabus 2025

    What does the JEE Main syllabus include?

    The JEE Main syllabus covers topics from Physics, Chemistry, and Mathematics based on the NCERT curriculum for Classes 11 and 12, with a focus on fundamental concepts and problem-solving.

    How to check the JEE 2025 syllabus?

    You can check the JEE 2025 syllabus by visiting the official NTA website or referring to the detailed syllabus provided in the JEE Main information bulletin for 2025.

    Is JEE Main 2025 Syllabus Changed?

    As of now, the JEE Main 2025 syllabus remains the same as previous years. However, it's advisable to check the official NTA website for any updates or changes.

    Chat on WhatsApp Call Infinity Learn