Search for: If ∫2ex+3e−x3ex+4e−xdx=Ax+Blog3e2x+4+C, thenIf ∫2ex+3e−x3ex+4e−xdx=Ax+Blog3e2x+4+C, thenAA=−34,B=124BA=34,B=−124CA=14,B=124DA=−34,B=14 Register to Get Free Mock Test and Study Material +91 Verify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution:Let∫2ex+3e−x3ex+4e−xdx=∫2e2x+33e2x+4dx 2e2x+3=A3e2x+4+B6e2x⇒ 2e2x+3=(3A+6B)e−2x+4AOn comparing both sides, we get2=3A+6B----i3=4A----iiFrom Eqs. (i) and (ii), woe get 2=94+6B⇒ 6B=2−94=−14 ⇒B=−124 ⇒2e2x+33e2x+4dx=∫33e2x+443e2x+4dx−124∫6e2x3e2x+4dx =34x−124log3e2x+4+CPost navigationPrevious: If roots of the equation (a – b)x2 + (c – a)x+(b – c) = 0 are equal, then a, b and c are in Next: ∫exsecx(1+tanx)dx is equal to Related content NEET Rank Assurance Program | NEET Crash Course 2023 JEE Main 2023 Question Papers with Solutions JEE Main 2024 Syllabus Best Books for JEE Main 2024 JEE Advanced 2024: Exam date, Syllabus, Eligibility Criteria JEE Main 2024: Exam dates, Syllabus, Eligibility Criteria JEE 2024: Exam Date, Syllabus, Eligibility Criteria NCERT Solutions For Class 6 Maths Data Handling Exercise 9.3 JEE Crash Course – JEE Crash Course 2023 NEET Crash Course – NEET Crash Course 2023