If cos⁡α+2cos⁡β+3cos⁡γ=sin⁡α+2sin⁡β+3sin⁡γ=0 then the value of sin 3α+8sin⁡3β+27sin⁡3γ is 

If cosα+2cosβ+3cosγ=sinα+2sinβ+3sinγ=0 then the value of sin 3α+8sin3β+27sin3γ is 

  1. A

    sin(α+β+γ)

  2. B

    3sin(α+β+γ)

  3. C

    18sin(α+β+γ)

  4. D

    sin(α+2β+γ)

    Register to Get Free Mock Test and Study Material



    +91



    Live ClassesRecorded ClassesTest SeriesSelf Learning

    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    Let a=cosα+isinα
    b=cosβ+isinβc=cosγ+isinγ
    Then, a+2b+3c=(cosα+2cosβ+3cosγ)
                                            +i(sinα+2sinβ+3sinγ)=0
    a3+8b3+27c3=18abccos3α+8cos3β+27cos3γ=18cos(α+β+γ)
    and sin3α+8sin3β+27sin3γ=18sin(α+β+γ)

    Chat on WhatsApp Call Infinity Learn

      Talk to our academic expert!



      +91



      Live ClassesRecorded ClassesTest SeriesSelf Learning

      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.