Search for: Let I=∫exe4x+e2x+1dx,J=∫e−xe−4x+e−2x+1dx, Then, for an arbitrary constant C, the value of J-I equalsLet I=∫exe4x+e2x+1dx,J=∫e−xe−4x+e−2x+1dx, Then, for an arbitrary constant C, the value of J-I equalsA12loge4x−e2x+1e4x+e2x+1+CB12loge2x+ex∣+1e2x−ex+1+CC12loge2x−ex+1e2x+ex+1+CD12loge4x+e2x+1e4x−e2x+1+C Register to Get Free Mock Test and Study Material +91 Verify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution:We have, J−I=∫e3xe4x2x+e2x+1−exe4x+e2x+1dx ⇒ J−I=∫e2x−1e4x+e2x+1dex⇒ J−I=∫t2−1t4+t2+1dt, where t=ex⇒ J−I=∫1t+1t2−1dt−1t⇒ J−I=12logt+1t−1t+tt+1+C⇒ J−I=12logt2−t+1t2+t+1+C=12loge2x−ex+1e2x+ex+1+CPost navigationPrevious: l=∫etan−1×1+x2sec−11+x22+cos−11−x21+x2dx. Then,Next: Let I1=∫01 ex1+xdx and I2=∫01 x2ex32−x3dx. Then, I1l2, is equal toRelated content JEE Main 2023 Result: Session 1 NEET 2024 JEE Advanced 2023 NEET Rank Assurance Program | NEET Crash Course 2023 JEE Main 2023 Question Papers with Solutions JEE Main 2024 Syllabus Best Books for JEE Main 2024 JEE Advanced 2024: Exam date, Syllabus, Eligibility Criteria JEE Main 2024: Exam dates, Syllabus, Eligibility Criteria JEE 2024: Exam Date, Syllabus, Eligibility Criteria