Let x1,x2,…,x10 be 10 observations such that ∑i=110 xi−5=10 and ∑i=110 xi−52=40. If mean and variance of observations x1−3,x2−3,…,x10−3 are λ and μ respectively, then (λ, μ)= 

Let x1,x2,,x10 be 10 observations such that i=110xi5=10 and i=110xi52=40. If mean and variance of observations x13,x23,,x103 are λ and μ respectively, then (λ, μ)=

 

  1. A

    (3, 3)

  2. B

    (1, 3)

  3. C

    (3, 1)

  4. D

    (1, 1)

    Register to Get Free Mock Test and Study Material

    +91

    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    We have,

          i=110xi5=10 and i=110xi52=40

    i=110xi32=10 and i=110xi322=40

    i=110xi320=10 and i=110xi324xi3+4=40

    i=110xi3=30 and i=110xi324=i=110xi3+40=40

    110i=110xi3=3 and 110i=110xi324×3=0

    λ=3 and 110i=110xi32=12

    λ=3 and 110i=110xi32110i=110xi32=129

    λ=3 and μ=3.

    Hence. (λ,μ)=(3,3)

    ALITER Let U and V be two variables taking values u1,u2,,u10 and v1,v2,,v10 respectively such that

             ui=xi5 and vi=xi3=ui+2,i=1,2,,10.

    It is given that

            i=110xi5=10 and i=110xi52=40

     i=110ui=10 and i=110ui2=40

     110i=110ui=1 and 110i=110ui2=4

     U¯=1 and 110i=110ui2110ui2=412

     U¯=1 and  Var(U)=3

    Now, vi=ui+2,i=1,2,,10

     V¯=U¯+2 and Var(V)=Var(U)

     λ=1+2=3 and μ=3(λ,μ)=(3,3)

     

     

     

     

     

    Chat on WhatsApp Call Infinity Learn

      Register to Get Free Mock Test and Study Material

      +91

      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.