lf f(x) is continuous for all real values of x, then ∑n=110 ∫01 f(r−1+x)dx

# lf f(x) is continuous for all real values of x, then $\sum _{\mathrm{n}=1}^{10} {\int }_{0}^{1} \mathrm{f}\left(\mathrm{r}-1+\mathrm{x}\right)\mathrm{dx}$

1. A

${\int }_{0}^{10} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}$

2. B

${\int }_{0}^{1} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}$

3. C

$10{\int }_{0}^{1} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}$

4. D

$9{\int }_{0}^{1} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}$

Fill Out the Form for Expert Academic Guidance!l

+91

Live ClassesBooksTest SeriesSelf Learning

Verify OTP Code (required)

### Solution:

$\begin{array}{c}\mathrm{I}=\sum _{\mathrm{r}=1}^{10} {\int }_{0}^{1} \mathrm{f}\left(\mathrm{r}-1+\mathrm{x}\right)\mathrm{dx}\\ {\mathrm{I}}_{\mathrm{t}}={\int }_{0}^{1} \mathrm{f}\left(\mathrm{t}-1+\mathrm{x}\right)\mathrm{dx}\end{array}$

## Related content

 How to Score 100 in Class 6 Maths using NCERT Solutions TS EAMCET Previous Year Question Papers CBSE Class 8 English Syllabus Academic Year 2023-2024 CBSE Class 7 English Syllabus Academic Year 2023-2024 CBSE Worksheets for Class 7 with Answers COMEDK UGET Mock Test 2024 (Available) – Free Mock Test Series Indian tribes Maurya Empire CBSE Class 10 Science Important Topics – You Should Not Miss in Board Exam 2024 CBSE Class 6 Social Science: Important Tips and Topics

+91

Live ClassesBooksTest SeriesSelf Learning

Verify OTP Code (required)