Sum of the first 20 terms of the series 1(2)(4)+(1)(3)(2)(4)(6)+(1)(3)(5)(2)(4)(6)(8)+… is

Sum of the first 20 terms of the series 

1(2)(4)+(1)(3)(2)(4)(6)+(1)(3)(5)(2)(4)(6)(8)+ is

  1. A

    121240 40C20

  2. B

    121241 42C21

  3. C

    121242 42C21

  4. D

    121243 40C20

    Register to Get Free Mock Test and Study Material



    +91



    Live ClassesRecorded ClassesTest SeriesSelf Learning

    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    Let ak denote the kth term of the series, then

    ak=(1)(3)(5)(2k1)(2)(4)(6)(2k)(2k+2)=(1)(3)(5)(2k1)(2k+22k1)(2)(4)(6)(2k)(2k+2)=bkbk+1

    where

    bk=(1)(3)(5)(2k1)(2)(4)(6)(2k)=(1)(2)(3)(4)(2k1)(2k)[(2)(4)(6)(2k)]2=122k 2kCk

    Thus,

    k=120ak=k=120bkbk+1=b1b21

    =121242 42C21

    Chat on WhatsApp Call Infinity Learn

      Talk to our academic expert!



      +91



      Live ClassesRecorded ClassesTest SeriesSelf Learning

      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.