Search for: Let f(x)=7tan8x+7tan6x−3tan4x−3tan2x for all x∈−π2,π2. Then the correct expression is Let f(x)=7tan8x+7tan6x−3tan4x−3tan2x for all x∈−π2,π2. Then the correct expression is A∫0π/4 xf(x)dx=112 and ∫0π/4 f(x)dx=0B∫0π/4 f(x)dx=2C∫0π/4 xf(x)dx=16D ∫0π/4 f(x)dx=1 Register to Get Free Mock Test and Study Material +91 Verify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution:We have,f(x)=7tan6x1+tan2x−3tan2x1+tan2x=7tan6x−3tan2xsec2x∴ ∫0π/4 f(x)dx=∫0π/4 7tan6x−3tan2xsec2xdx⇒ ∫0π/4 f(x)dx=∫01 7t6−3t2dt, where t=tanx.∫0π/4 xf(x)dx=xtan7x−tan3x0π/4−∫0π/4 tan7x−tan3xdx=−∫0π/4 tan3xtan4x−1dx=−∫0π/4 tan3xtan2x−1tan2x+1dx=−∫0π/4 tan3xtan2x−1sec2xdx=−∫01 t3t2−1dt, where t=tanx=−t66−t4401=112 Post navigationPrevious: ∫x2−1xx4+3×2+1dx is equal toNext: ∫x4+1×6+1dx is equal toRelated content NEET Rank Assurance Program | NEET Crash Course 2023 JEE Main 2023 Question Papers with Solutions JEE Main 2024 Syllabus Best Books for JEE Main 2024 JEE Advanced 2024: Exam date, Syllabus, Eligibility Criteria JEE Main 2024: Exam dates, Syllabus, Eligibility Criteria JEE 2024: Exam Date, Syllabus, Eligibility Criteria NCERT Solutions For Class 6 Maths Data Handling Exercise 9.3 JEE Crash Course – JEE Crash Course 2023 NEET Crash Course – NEET Crash Course 2023