Search for: The value of 2∫sinxsinx−π4dx, isThe value of 2∫sinxsinx−π4dx, isAx+logsinx−π4+CBx−logcosx−π4+CCx+logcosx−π4+CDx−logsinx−π4+C Register to Get Free Mock Test and Study Material +91 Verify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution:We have,2∫sinxsinx−π4dx=2∫sinx−π4+π4sinx−π4dx=2∫sinx−π4cosπ4+cosx−π4sinπ4sinx−π4dx=∫1⋅dx+∫cotx−π4dx=x+logsinx−π4+CPost navigationPrevious: If ∫ex(1+x)sec2xexdx=f(x)+ Constant, then f (x) is equal to Next: ∫1sin(x−a)sin(x−b)dx=Related content JEE Main 2023 Question Papers with Solutions JEE Main 2024 Syllabus Best Books for JEE Main 2024 JEE Advanced 2024: Exam date, Syllabus, Eligibility Criteria JEE Main 2024: Exam dates, Syllabus, Eligibility Criteria JEE 2024: Exam Date, Syllabus, Eligibility Criteria NCERT Solutions For Class 6 Maths Data Handling Exercise 9.3 JEE Crash Course – JEE Crash Course 2023 NEET Crash Course – NEET Crash Course 2023 JEE Advanced Crash Course – JEE Advanced Crash Course 2023