Study MaterialsCBSE NotesSets Class 11 Notes Maths Chapter 1

Sets Class 11 Notes Maths Chapter 1

CBSE Class 11 Maths Notes Chapter 1 Sets

Set
A set is a well-defined collection of objects.

Representation of Sets
There are two methods of representing a set

    Join Infinity Learn Regular Class Program!

    Download FREE PDFs, solved questions, Previous Year Papers, Quizzes, and Puzzles!

    +91

    Verify OTP Code (required)





    I agree to the terms and conditions and privacy policy.

    • Roster or Tabular form In the roster form, we list all the members of the set within braces { } and separate by commas.
    • Set-builder form In the set-builder form, we list the property or properties satisfied by all the elements of the sets.

    Types of Sets – Class 11 Maths Notes

    • Empty Sets: A set which does not contain any element is called an empty set or the void set or null set and it is denoted by {} or Φ.
    • Singleton Set: A set consists of a single element, is called a singleton set.
    • Finite and infinite Set: A set which consists of a finite number of elements, is called a finite set, otherwise the set is called an infinite set.
    • Equal Sets: Two sets A and 6 are said to be equal, if every element of A is also an element of B or vice-versa, i.e. two equal sets will have exactly the same element.
    • Equivalent Sets: Two finite sets A and 6 are said to be equal if the number of elements are equal, i.e. n(A) = n(B)

    Subset – Class 11 Maths Notes

    A set A is said to be a subset of set B if every element of set A belongs to set B. In symbols, we write
    A ⊆ B, if x ∈ A ⇒ x ∈ B

    Note:

    • Every set is o subset of itself.
    • The empty set is a subset of every set.
    • The total number of subsets of a finite set containing n elements is 2n.

    Intervals as Subsets of R
    Let a and b be two given real numbers such that a < b, then

    • an open interval denoted by (a, b) is the set of real numbers {x : a < x < b}.
    • a closed interval denoted by [a, b] is the set of real numbers {x : a ≤ x ≤ b}.
    • intervals closed at one end and open at the others are known as semi-open or semi-closed interval and denoted by (a, b] is the set of real numbers {x : a < x ≤ b} or [a, b) is the set of real numbers {x : a ≤ x < b}.

    Power Set
    The collection of all subsets of a set A is called the power set of A. It is denoted by P(A). If the number of elements in A i.e. n(A) = n, then the number of elements in P(A) = 2n.

    Universal Set
    A set that contains all sets in a given context is called the universal set.

    Venn-Diagrams
    Venn diagrams are the diagrams, which represent the relationship between sets. In Venn-diagrams the universal set U is represented by point within a rectangle and its subsets are represented by points in closed curves (usually circles) within the rectangle.

    Operations of Sets
    Union of sets: The union of two sets A and B, denoted by A ∪ B is the set of all those elements which are either in A or in B or in both A and B. Thus, A ∪ B = {x : x ∈ A or x ∈ B}.

    Intersection of sets: The intersection of two sets A and B, denoted by A ∩ B, is the set of all elements which are common to both A and B.
    Thus, A ∩ B = {x : x ∈ A and x ∈ B}

    Disjoint sets: Two sets Aand Bare said to be disjoint, if A ∩ B = Φ.

    Intersecting or Overlapping sets: Two sets A and B are said to be intersecting or overlapping if A ∩ B ≠ Φ

    Difference of sets: For any sets A and B, their difference (A – B) is defined as a set of elements, which belong to A but not to B.
    Thus, A – B = {x : x ∈ A and x ∉ B}
    also, B – A = {x : x ∈ B and x ∉ A}

    Complement of a set: Let U be the universal set and A is a subset of U. Then, the complement of A is the set of all elements of U which are not the element of A.
    Thus, A’ = U – A = {x : x ∈ U and x ∉ A}

    Some Properties of Complement of Sets

    • A ∪ A’ = ∪
    • A ∩ A’ = Φ
    • ∪’ = Φ
    • Φ’ = ∪
    • (A’)’ = A

    Symmetric difference of two sets: For any set A and B, their symmetric difference (A – B) ∪ (B – A)
    (A – B) ∪ (B – A) defined as set of elements which do not belong to both A and B.
    It is denoted by A ∆ B.
    Thus, A ∆ B = (A – B) ∪ (B – A) = {x : x ∉ A ∩ B}.

    Laws of Algebra of Sets – Class 11 Maths Notes

    Idempotent Laws: For any set A, we have

    • A ∪ A = A
    • A ∩ A = A

    Identity Laws: For any set A, we have

    • A ∪ Φ = A
    • A ∩ U = A

    Commutative Laws: For any two sets A and B, we have

    • A ∪ B = B ∪ A
    • A ∩ B = B ∩ A

    Associative Laws: For any three sets A, B and C, we have

    • A ∪ (B ∪ C) = (A ∪ B) ∪ C
    • A ∩ (B ∩ C) = (A ∩ B) ∩ C

    Distributive Laws: If A, B and Care three sets, then

    • A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
    • A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

    De-Morgan’s Laws: If A and B are two sets, then

    • (A ∪ B)’ = A’ ∩ B’
    • (A ∩ B)’ = A’ ∪ B’

    Formulae to Solve Practical Problems on Union and Intersection of Two Sets
    Let A, B and C be any three finite sets, then

    • n(A ∪ B) = n(A) + n (B) – n(A ∩ B)
    • If (A ∩ B) = Φ, then n (A ∪ B) = n(A) + n(B)
    • n(A – B) = n(A) – n(A ∩ B)
    • n(A ∪ B ∪ C) = n(A) + n(B) + n(C) – n(A ∩ B) – n(B ∩ C) – n(A ∩ C) + n(A ∩ B ∩ C)
    Chat on WhatsApp

      Join Infinity Learn Regular Class Program!

      Sign up & Get instant access to FREE PDF's, solved questions, Previous Year Papers, Quizzes and Puzzles!

      +91

      Verify OTP Code (required)





      I agree to the terms and conditions and privacy policy.