Mathematicsf(x)=x2+xg′(1)+g′′(2) and g(x)=f(1)x2+xf′(x)+f′′(x)

f(x)=x2+xg′(1)+g′′(2) and g(x)=f(1)x2+xf′(x)+f′′(x)

    Fill Out the Form for Expert Academic Guidance!l



    +91



    Live ClassesBooksTest SeriesSelf Learning



    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    Given:

    f(x) = x^2 + xg'(1) + g''(2)

    g(x) = f(1)x^2 + xf'(x) + f''(x)

    First, calculate f(1):

    f(1) = 1^2 + 1g'(1) + g''(2)

    f(1) = 1 + g'(1) + g''(2)

    Next, find the derivatives of g(x):

    First derivative g'(x):

    g'(x) = 2f(1)x + f'(x) + xf''(x)

    Second derivative g''(x):

    g''(x) = 2f(1) + f''(x) + f''(x)

    g''(x) = 2f(1) + 2f''(x)

    Evaluate the derivatives at specific points:

    g'(1) = 2f(1) + f'(1) + f''(1)

    g''(2) = 2f(1) + 2f''(2)

    Substitute these back into the original equation for f(x):

    f(1) = 1 + g'(1) + g''(2)

    f(1) = 1 + (2f(1) + f'(1) + f''(1)) + (2f(1) + 2f''(2))

    Combine like terms:

    f(1) = 1 + 2f(1) + f'(1) + f''(1) + 2f(1) + 2f''(2)

    f(1) = 1 + 4f(1) + f'(1) + f''(1) + 2f''(2)

    To solve this system, additional information about the specific forms or values of the derivatives f'(1), f''(1), and f''(2) is required.

    Chat on WhatsApp Call Infinity Learn