MathematicsA cure is represented parametrically by the equations x=f(t)=aIn⁡bt and y=g(t)=b−In⁡ata,b>0 and a≠1,b≠1 where t∈R

A cure is represented parametrically by the equations x=f(t)=aIn⁡bt and y=g(t)=b−In⁡ata,b>0 and a≠1,b≠1 where t∈R

    Fill Out the Form for Expert Academic Guidance!l



    +91



    Live ClassesBooksTest SeriesSelf Learning



    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    Given the parametric equations \( x = f(t) = a \ln(bt) \) and \( y = g(t) = b - \ln(at) \), where \( a, b > 0 \) and \( a \neq 1, b \neq 1 \), \( t \in \mathbb{R} \):

    1. Find the expression for \( t \) from \( x \):

    \( x = a \ln(bt) \)

    Solve for \( t \):

    \( t = \frac{e^{x/a}}{b} \)

    2. Substitute \( t \) in the expression for \( y \):

    \( y = b - \ln(at) \)

    Substitute \( t = \frac{e^{x/a}}{b} \):

    \( y = b - \ln \left( a \cdot \frac{e^{x/a}}{b} \right) \)

    \( y = b - \ln(a) - \ln \left( \frac{e^{x/a}}{b} \right) \)

    \( y = b - \ln(a) - \left( \frac{x}{a} - \ln(b) \right) \)

    \( y = b - \ln(a) - \frac{x}{a} + \ln(b) \)

    \( y = b + \ln(b) - \ln(a) - \frac{x}{a} \)

    Therefore, the curve can be expressed as:

    \( y = b + \ln(b) - \ln(a) - \frac{x}{a} \)

    Chat on WhatsApp Call Infinity Learn