MathematicsState true or false.AB and AC are two chords of a circle of radius r such that AB = 2AC. If p and q are the distances of AB and AC from the center, then 4 q 2 = p 2 +2 r 2  .

State true or false.


AB and AC are two chords of a circle of radius r such that AB = 2AC. If p and q are the distances of AB and AC from the center, then 4 q 2 = p 2 +2 r 2  .


  1. A
    True
  2. B
    False 

    Fill Out the Form for Expert Academic Guidance!l



    +91



    Live ClassesBooksTest SeriesSelf Learning



    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    Given that, AB = 2AC   and the form the center distance of AB and AC are p and q.
    Let AC = a and AB = 2a.
    As the perpendicular drawn to the constructed-on AC and AB from center O at M and N, thus:
    AM = MC =  a 2 AN = NB = a  
    In ΔOAM  , using Pythagorean theorem,
    AO² = AM² + MO² AO² =  a 2 2  + q²     1  
    In ΔOAN  , using Pythagorean theorem,
    AO² = AN² + NO² AO² = a² + p²              (2)  
    In ΔOAN  , using Pythagorean theorem,
    r² = a² + p²        3   Simplifying,
    a 2 2  + q² = a² + p² a 2 4  + q² = a² + p² 4q² = 3a² + 4p² 4q² = p² + 3a² + 3p² 4q² = p² + 3 a² + p²  
    Using equation (3) we have 4q² = p² + 3r²  .
    So, the statement is false, and if p and q are the distances of AB and AC from the center, then 4q² = p² + 3r²  .
    Hence, option 2 is correct.
     
    Chat on WhatsApp Call Infinity Learn