BlogIIT-JEEMoment of Inertia of a Solid Cylinder

Moment of Inertia of a Solid Cylinder

In one of our previous articles, we discussed about moment of inertia of a rectangle. In this article, we shall learn about how to calculate the moment of inertia of a solid cylinder. We shall also learn the derivation.

    Fill Out the Form for Expert Academic Guidance!



    +91

    Verify OTP Code (required)


    I agree to the terms and conditions and privacy policy.

    The equation that gives the moment of inertia of a solid cylinder about its centre is:

    Moment of Inertia of a Solid Cylinder

    Where M = total mass and R = radius of the cylinder.

    Derivation of Moment of Inertia of a Solid Cylinder

    Initially, we start with a solid cylinder of mass M, radius R, and length L. We’ll figure out its moment of inertia about the central axis.

    Moment of Inertia of a Solid Cylinder

    Several factors must be considered in this case:

    • The solid cylinder must be cut or split into extremely thin rings.
    • Every ring is made up of the thickness dr and the length L.
    • We must sum the moments of these infinitesimally thin cylindrical shells.

    We would then take the steps that have been laid out for us.

    (1) We’ll use the general moment of inertia equation:

    dI = r2 dm

    Then, we move on to finding the dm. It is normally given as;

    dm = ρ dV

    To get dm we have to calculate dv first. It is given as;

    dV = dA L

    In the meantime, dA is the area of the big ring (radius: r + dr) minus the smaller ring (radius: r). Thus;


    class 12 jee test series

    Boost Your Preparation With Our All India Test Series for Class 12 JEE Main & Advanced 2025

    (2) When substituting dA into dV we get;

    dV = dAL = 2πrdrL

    Then, we substitute dV into dm and we will have;

    dm = (2πrdr)Lρ

    Now, the dm expression is further substituted into the dI equation and we get;

    (3) Conversely, we must also find the expression for density. We employ the equation;


    class 13 jee test series

    Boost Your Preparation With Our All India Test Series for Class 13 JEE Main & Advanced 2025

    (4) The final stage is to use integration to calculate the moment of inertia of the solid cylinder. The integration takes the shape of a polynomial integral form.

    Related Post

    FAQs on Moment of Inertia of a Solid Cylinder

    What is a solid cylinder?

    A solid cylinder is a three-dimensional geometric shape with two parallel circular bases of the same size and shape connected by a curved surface, giving it a uniform distribution of mass.

    What is the moment of inertia of a solid cylinder?

    The moment of inertia of a solid cylinder depends on its mass, radius, and axis of rotation, and is calculated using the formula (1/2) * mass * radius^2.

    What is the formula for moment of inertia of a cylinder?

    The formula for the moment of inertia of a cylinder depends on whether it's solid or hollow, and whether you're calculating it about its central axis or a different axis.

    What is the moment of inertia of a solid cylinder about the end?

    The moment of inertia of a solid cylinder about its end is (1/4) * mass * radius^2.

    What is the moment of inertia of a solid cylinder about its geometrical axis?

    The moment of inertia of a solid cylinder about its geometrical axis (central axis) is (1/2) * mass * radius^2.

    Chat on WhatsApp Call Infinity Learn