Table of Contents
Binary and string are two distinct data types used in computer programming and data representation.
Binary
Binary refers to the base-2 numeral system that uses only two symbols, typically 0 and 1. It is the fundamental language of computers, where data and instructions are represented as sequences of binary digits (bits). Each bit represents a binary value of either 0 or 1. Binary data is essential for low-level operations, hardware control, and digital storage, forming the foundation of all digital computing systems.
String
A string is a data type used to represent a sequence of characters, such as letters, numbers, and symbols. In most programming languages, strings are denoted by enclosing the characters within single (‘ ‘) or double (” “) quotes. Strings allow the manipulation and representation of textual data. They are commonly used for user input, text processing, and displaying information in software applications.
How to Convert Binary to Text
To convert binary data to text, you need to follow these steps:
- Divide the binary data into 8-bit (1 byte) : Binary data is often represented in multiples of 8 bits (bytes). If the binary data is not a multiple of 8 bits, add leading zeros to make it a complete byte.
- Convert each 8-bit to its decimal equivalent: Each 8-bit binary represents a number in the range 0 to 255 in decimal.
- Use the ASCII (American Standard Code for Information Interchange) table: ASCII is a character encoding standard that associates each decimal number in the range 0 to 127 with a specific character. The extended ASCII table (0 to 255) includes additional characters.
- Map the decimal numbers to their corresponding ASCII characters: Use the ASCII table to find the text representation for each decimal number obtained from the binary chunks.
- Concatenate the text representations: Combine all the text representations obtained in step 4 to form the final text string.
Binary to ASCII text conversion table
Hexadecimal | Binary | ASCII Character |
00 | 00000000 | NUL |
01 | 00000001 | SOH |
02 | 00000010 | STX |
03 | 00000011 | ETX |
04 | 00000100 | EOT |
05 | 00000101 | ENQ |
06 | 00000110 | ACK |
07 | 00000111 | BEL |
08 | 00001000 | BS |
09 | 00001001 | HT |
0A | 00001010 | LF |
0B | 00001011 | VT |
0C | 00001100 | FF |
0D | 00001101 | CR |
0E | 00001110 | SO |
0F | 00001111 | SI |
10 | 00010000 | DLE |
11 | 00010001 | DC1 |
12 | 00010010 | DC2 |
13 | 00010011 | DC3 |
14 | 00010100 | DC4 |
15 | 00010101 | NAK |
16 | 00010110 | SYN |
17 | 00010111 | ETB |
18 | 00011000 | CAN |
19 | 00011001 | EM |
1A | 00011010 | SUB |
1B | 00011011 | ESC |
1C | 00011100 | FS |
1D | 00011101 | GS |
1E | 00011110 | RS |
1F | 00011111 | US |
20 | 00100000 | Space |
21 | 00100001 | ! |
22 | 00100010 | “ |
23 | 00100011 | # |
24 | 00100100 | $ |
25 | 00100101 | % |
26 | 00100110 | & |
27 | 00100111 | ‘ |
28 | 00101000 | ( |
29 | 00101001 | ) |
2A | 00101010 | * |
2B | 00101011 | + |
2C | 00101100 | , |
2D | 00101101 | – |
2E | 00101110 | . |
2F | 00101111 | / |
30 | 00110000 | 0 |
31 | 00110001 | 1 |
32 | 00110010 | 2 |
33 | 00110011 | 3 |
34 | 00110100 | 4 |
35 | 00110101 | 5 |
36 | 00110110 | 6 |
37 | 00110111 | 7 |
38 | 00111000 | 8 |
39 | 00111001 | 9 |
3A | 00111010 | : |
3B | 00111011 | ; |
3C | 00111100 | < |
3D | 00111101 | = |
3E | 00111110 | > |
3F | 00111111 | ? |
40 | 01000000 | @ |
41 | 01000001 | A |
42 | 01000010 | B |
43 | 01000011 | C |
44 | 01000100 | D |
45 | 01000101 | E |
46 | 01000110 | F |
47 | 01000111 | G |
48 | 01001000 | H |
49 | 01001001 | I |
4A | 01001010 | J |
4B | 01001011 | K |
4C | 01001100 | L |
4D | 01001101 | M |
4E | 01001110 | N |
4F | 01001111 | O |
50 | 01010000 | P |
51 | 01010001 | Q |
52 | 01010010 | R |
53 | 01010011 | S |
54 | 01010100 | T |
55 | 01010101 | U |
56 | 01010110 | V |
57 | 01010111 | W |
58 | 01011000 | X |
59 | 01011001 | Y |
5A | 01011010 | Z |
5B | 01011011 | [ |
5C | 01011100 | \ |
5D | 01011101 | ] |
5E | 01011110 | ^ |
5F | 01011111 | _ |
60 | 01100000 | ` |
61 | 01100001 | a |
62 | 01100010 | b |
63 | 01100011 | c |
64 | 01100100 | d |
65 | 01100101 | e |
66 | 01100110 | f |
67 | 01100111 | g |
68 | 01101000 | h |
69 | 01101001 | i |
6A | 01101010 | j |
6B | 01101011 | k |
6C | 01101100 | l |
6D | 01101101 | m |
6E | 01101110 | n |
6F | 01101111 | o |
70 | 01110000 | p |
71 | 01110001 | q |
72 | 01110010 | r |
73 | 01110011 | s |
74 | 01110100 | t |
75 | 01110101 | u |
76 | 01110110 | v |
77 | 01110111 | w |
78 | 01111000 | x |
79 | 01111001 | y |
7A | 01111010 | z |
7B | 01111011 | { |
7C | 01111100 | | |
7D | 01111101 | } |
7E | 01111110 | ~ |
7F | 01111111 | DEL |
FAQs on Binary to string converter
How do you convert binary to string?
To convert binary to a string, follow these steps: Group the binary digits into sets of 8 (1 byte) from right to left. Convert each group of 8 binary digits into its decimal equivalent. Translate the decimal values to their corresponding ASCII characters. Concatenate the ASCII characters to form the string.
What is the binary string for 12?
The binary representation of the decimal number 12 is 1100.
What is the binary format of a string?
The binary format of a string involves representing each character in the string as a series of binary digits using their ASCII codes.
How to read a binary string?
To read a binary string, follow these steps: Group the binary digits into sets of 8 (1 byte) from right to left. Convert each group of 8 binary digits into its decimal equivalent. Translate the decimal values to their corresponding ASCII characters. Concatenate the ASCII characters to form the string.
Is 0 a binary string?
Yes, 0 can be considered a binary string. In the binary numeral system, 0 represents the absence of a binary digit (bit) or the value zero.