Search for: ∫(1+x)sin xx2+2xcos2 x−(1+x)sin 2xdx∫(1+x)sin xx2+2xcos2 x−(1+x)sin 2xdxA12logesinx−(x+1)cosx−1sinx−(x+1)cosx+1+CB12tan−1{sinx−(x+1)cosx}+CC12sin−1{sinx−(x+1)cosx}+CD12sin−1(cosx+sinx)+C Register to Get Free Mock Test and Study Material +91 Verify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution:I=∫(1+x)sin xdx(x+1)2cos2x−cos2 x−2(1+x)sin xcos xI=(1+x)sinxdx(x+1)2cos2x+sin2 x−2(1+x)sin xcos x−1I=(1+x)sinx(sinx−(x+1)cosx)2−1dx Put sinx−(x+1)cosx=t⇒sin x(x+1)dx=dt∴ I=∫dtt2−1=12log t−1t+1+C=12loge sin x−(x+1)cos x−1sin x−(x+1)cos x+1+CPost navigationPrevious: ∫cosec2 x−2005cos2005 xdxNext: A value of b for which the equations x2+bx−1=0 and x2+x+b=0 have one root in common, isRelated content JEE Advanced 2023 NEET Rank Assurance Program | NEET Crash Course 2023 JEE Main 2023 Question Papers with Solutions JEE Main 2024 Syllabus Best Books for JEE Main 2024 JEE Advanced 2024: Exam date, Syllabus, Eligibility Criteria JEE Main 2024: Exam dates, Syllabus, Eligibility Criteria JEE 2024: Exam Date, Syllabus, Eligibility Criteria NCERT Solutions For Class 6 Maths Data Handling Exercise 9.3 JEE Crash Course – JEE Crash Course 2023