Assuming x to be so small that x3 and higher powers of x can be neglected, then value ofE=1−32×5(2+3x)6, is

# Assuming x to be so small that ${x}^{3}$ and higher powers of x can be neglected, then value of$E={\left(1-\frac{3}{2}x\right)}^{5}\left(2+3x{\right)}^{6}$, is

1. A

$64+96x+720{x}^{2}$

2. B

$65+97x+721{x}^{2}$

3. C

$64-96x+720{x}^{2}$

4. D

$64+96x-720{x}^{2}$

Register to Get Free Mock Test and Study Material

+91

Live ClassesRecorded ClassesTest SeriesSelf Learning

Verify OTP Code (required)

I agree to the terms and conditions and privacy policy.

### Solution:

We have

$\begin{array}{l}{\left(1-\frac{3}{2}x\right)}^{5}\left(2+3x{\right)}^{6}={2}^{6}{\left(1-\frac{3}{2}x\right)}^{5}{\left(1+\frac{3}{2}x\right)}^{6}\\ ={2}^{6}\left(1+\frac{3}{2}x\right){\left[\left(1-\frac{3}{2}x\right)\left(1+\frac{3}{2}x\right)\right]}^{5}\\ ={2}^{6}\left(1+\frac{3}{2}x\right){\left(1-\frac{9}{4}{x}^{2}\right)}^{5}\\ ={2}^{6}\left(1+\frac{3}{2}x\right)\left(1-\frac{45}{4}{x}^{2}\right)\end{array}$

$={2}^{6}\left(1+\frac{3}{2}x-\frac{45}{4}{x}^{2}\right)=64+96x-720{x}^{2}$

## Related content

 Distance Speed Time Formula Refractive Index Formula Mass Formula Electric Current Formula Ohm’s Law Formula Wavelength Formula Electric Power Formula Resistivity Formula Weight Formula Linear Momentum Formula

Talk to our academic expert!

+91

Live ClassesRecorded ClassesTest SeriesSelf Learning

Verify OTP Code (required)

I agree to the terms and conditions and privacy policy.