Search for: MathematicsI=∫π/4π/3 8sinx−sin2xxdx. Then I=∫π/4π/3 8sinx−sin2xxdx. Then Aπ2<I<3π4Bπ5<I<5π12C5π12<I<23πD3π4<I<π Fill Out the Form for Expert Academic Guidance!l Grade ---Class 1Class 2Class 3Class 4Class 5Class 6Class 7Class 8Class 9Class 10Class 11Class 12 Target Exam JEENEETCBSE +91 Preferred time slot for the call ---9 am10 am11 am12 pm1 pm2 pm3 pm4 pm5 pm6 pm7 pm8pm9 pm10pm Please indicate your interest Live ClassesBooksTest SeriesSelf Learning Language ---EnglishHindiMarathiTamilTeluguMalayalam Are you a Sri Chaitanya student? NoYes Verify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution:Considerf(x)=8sinx−sin2xf'(x)=8cosx−2cos2xf''(x)=−8sinx+4sin2x=−8sinx(1−cosx)∴f′′(x)<0,x∈π4,π3∴f ′(x) is ↓ function f′π3<f′(x)<f′π45<f ′(x)<825<f ′(x)<425x<f(x)<42x5<f(x)x<42∫π/4π/3 5<∫π/4π/3f(x)x<∫π/4π/3 42∫π/4π/3 5<∫π/4π/38sinx−sin2xx<∫π/4π/3 425π12<I<2π3 Related content Matrices and Determinants_mathematics