If a function y=f(x) satisfies the differential equation f(x)⋅sin⁡2x−cos⁡x+1+sin2⁡xf′(x)=0 with initial condition y(0)=0, then the value  of fπ6 is equal to 

 If a function y=f(x) satisfies the differential equation f(x)sin2xcosx+(1+sin2x)f(x)=0 with initial condition y(0)=0, then the value  of f(π6) is equal to 

  1. A

    15

  2. B

    35

  3. C

    45

  4. D

    25

    Fill Out the Form for Expert Academic Guidance!l



    +91



    Live ClassesBooksTest SeriesSelf Learning



    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

     The given equation is f(x)sin2xcosx+(1+sin2x)f(x)=0ysin2xcosx+(1+sin2x)dydx=0

    dydx+(sin2x1+sin2x)y=cosx1+sin2x is in the form of dydx+Py=Q Where P=sin2x1+sin2x and Q=cosx1+sin2x

     Integrating Factor (IF)=esin2x1+sin2xdx=eln(1+sin2x)(f(x)f(x)dx=ln|f(x)|+C)=1+sin2x General solution is y(IF)=(IF)Qdxy(1+sin2x)=(1+sin2x)cosx(1+sin2x)dx

    y(1+sin2x)=cosxdx=sinx+C When x=0,y=0C=0 When x=π6, then y(1+14)=12y(54)=12y=25f(π6)=25

    Therefore, the correct answer is (4).

    Chat on WhatsApp Call Infinity Learn
    chat-icon
    0