Solution:
The given equation is f(x)⋅sin2x−cosx+(1+sin2x)f′(x)=0⇒ysin2x−cosx+(1+sin2x)dydx=0
⇒dydx+(sin2x1+sin2x)y=cosx1+sin2x is in the form of dydx+Py=Q Where P=sin2x1+sin2x and Q=cosx1+sin2x
Integrating Factor (IF)=e∫sin2x1+sin2xdx=eln(1+sin2x)(∵∫f′(x)f(x)dx=ln|f(x)|+C)=1+sin2x General solution is y⋅(IF)=∫(IF)Qdx⇒y(1+sin2x)=∫(1+sin2x)cosx(1+sin2x)dx
⇒y(1+sin2x)=∫cosxdx=sinx+C When x=0,y=0⇒C=0 When x=π6, then y(1+14)=12⇒y(54)=12⇒y=25∴f(π6)=25
Therefore, the correct answer is (4).