If a function y=f(x) satisfies the differential equation f(x)⋅sin⁡2x−cos⁡x+1+sin2⁡xf′(x)=0 with initial condition y(0)=0, then the value  of fπ6 is equal to 

 If a function y=f(x) satisfies the differential equation f(x)sin2xcosx+1+sin2xf(x)=0 with initial condition y(0)=0, then the value  of fπ6 is equal to 

  1. A

    15

  2. B

    35

  3. C

    45

  4. D

    25

    Fill Out the Form for Expert Academic Guidance!l



    +91



    Live ClassesBooksTest SeriesSelf Learning



    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

     The given equation is f(x)sin2xcosx+1+sin2xf(x)=0ysin2xcosx+1+sin2xdydx=0

    dydx+sin2x1+sin2xy=cosx1+sin2x is in the form of dydx+Py=Q Where P=sin2x1+sin2x and Q=cosx1+sin2x

     Integrating Factor (IF)=esin2x1+sin2xdx=eln1+sin2x f(x)f(x)dx=ln|f(x)|+C=1+sin2x General solution is y(IF)=(IF)Qdxy1+sin2x=1+sin2xcosx1+sin2xdx

    y1+sin2x=cosxdx=sinx+C When x=0,y=0C=0 When x=π6, then y1+14=12y54=12y=25fπ6=25

    Therefore, the correct answer is (4).

    Chat on WhatsApp Call Infinity Learn