If the straight line, 2x−3y+17=0 is perpendicular to the line passing through the points (7,17) and (15,β), then β=

# If the straight line, $2\mathrm{x}-3\mathrm{y}+17=0$ is perpendicular to the line passing through the points (7,17) and (15,$\mathrm{\beta }$), then $\mathrm{\beta }$=

1. A

-5

2. B

-35/3

3. C

35/3

4. D

5

Fill Out the Form for Expert Academic Guidance!l

+91

Live ClassesBooksTest SeriesSelf Learning

Verify OTP Code (required)

### Solution:

Slope of
Slope of line joining
The lines are perpendicular $⇒\left(\frac{2}{3}\right)\left(\frac{\mathrm{\beta }-17}{8}\right)=-1⇒\mathrm{\beta }-17=-12⇒\mathrm{\beta }=5$

## Related content

 How to Score 100 in Class 6 Maths using NCERT Solutions TS EAMCET Previous Year Question Papers CBSE Class 8 English Syllabus Academic Year 2023-2024 CBSE Class 7 English Syllabus Academic Year 2023-2024 CBSE Worksheets for Class 7 with Answers COMEDK UGET Mock Test 2024 (Available) – Free Mock Test Series Indian tribes Maurya Empire CBSE Class 10 Science Important Topics – You Should Not Miss in Board Exam 2024 CBSE Class 6 Social Science: Important Tips and Topics

+91

Live ClassesBooksTest SeriesSelf Learning

Verify OTP Code (required)